

PRUD'HOMME

transmissions

25, Chemin d'Aubervilliers - 93203 SAINT-DENIS CEDEX - FRANCE

 TÉLÉPHONE
 : +33 (0)1 48 11 46 00

 FAX
 : +33 (0)1 48 34 49 49

 e-mail
 : info@prudhomme-trans.com

 Internet
 : www.prudhomme-trans.com

HORAIRES

PERMANENCE TÉLÉPHONIQUE

Lundi-jeudi: 17h00 - 18h00 • Vendredi: 15h00-16h00

ENLÈVEMENT AU COMPTOIR

Pour éviter l'attente

- Passer commande au service commercial AVANT de venir,
- Lui indiquer votre date de passage,
- Noter le numéro de confirmation de commande,
- Indiquer ce numéro lors de l'enlèvement au comptoir.

Paiement possible par CB

CONDITIONS GÉNÉRALES DE VENTE

Nos conditions générales de vente sont susceptibles de modification sans préavis; les conditions générales de vente complètes en vigueur actuellement sont celles disponibles sur notre site internet www.prudhomme-trans.com.

Les conditions ci-dessous sont réputées connues de tout acheteur et toute commande implique leur acceptation. Conformément aux dispositions de l'article L441-6 du code de commerce elles prévalent sur toutes conditions d'achat, sauf accord particulier convenu entre les parties.

FACTURATION MINIMUM 50 € HT.

PAIEMENT

Nos factures sont payables à Saint-Denis à l'échéance déterminée par nos conditions de vente ci-dessous et conformément aux lois en vigueur.

A) CLIENTS N'AYANT PAS DE COMPTE OUVERT CHEZ NOUS Facture proforma, net sans escompte.

B) CLIENTS AYANT UN COMPTE OUVERT CHEZ NOUS

- Par chèque à réception pour les commandes supérieures à 50 € HT et inférieures à 150 € HT.
- Selon les modalités précisées sur notre accusé de réception de commande, pour les commandes supérieures à 150 € HT.
- Tout retard de paiement entraînera automatiquement la suspension des commandes en cours, ou nouvellement reçues.
- Commandes impliquant une fabrication spéciale ou la modification de pièces standard: Versement préalable d'un acompte de 1/3 à la commande.
 Ces commandes ne peuvent être annulées dès lors que l'exécution en est commencée ou la matière première commandée.

PRIX ET CONDITIONS DE PAIEMENT

- La facturation a toujours lieu au prix en vigueur le jour de la livraison.
 Nos offres de prix, sauf stipulation contraire de notre part, sont donc révisables.
 Nos prix sont établis «DÉPART NOS MAGASINS».
- Toute somme non payée à l'échéance donnera lieu au paiement par le client de pénalités de retard fixées au taux de refinancement semestriel de la BCE, majoré de 10%.
- Ces pénalités sont exigibles de plein droit et seront d'office portées au débit du compte client.
- Conformément aux articles L441-6 et D441-5 du Code de commerce, tout retard de paiement entraîne de plein droit, outre les pénalités de retard, une obligation pour le débiteur de payer une indemnité forfaitaire de 40,00€ pour frais de recouvrement.

EMBALLAGE Facturé et non repris.

DÉLAIS

Ils sont toujours remis sans engagement. Aucune pénalité ne pourra être encourue s'ils ne peuvent être tenus.

RÉSERVE DE PROPRIÉTÉ

Notre société conserve l'entière propriété du matériel livré jusqu'à complet paiement du prix facturé en principal et en intérêts. Jusqu'à cette date, le matériel livré sera considéré comme consigné et l'acheteur supportera le risque des

dommages que ce matériel pourrait subir ou occasionner pour quelque cause que ce soit. Jusqu'à complet paiement, les biens ne pourront être revendus sans notre accord préalable. Nonobstant toute disposition contraire, en cas de non-respect par l'acheteur d'une des échéances de paiement, Prud'homme Transmissions, sans perdre aucun de ses autres droits, pourra exiger, par simple lettre recommandée, la restitution des biens aux frais de l'acheteur jusqu'à exécution par ce dernier de la totalité de ses engagements.

En cas de dépôt de bilan, règlement judiciaire ou suspension des poursuites, l'acheteur ne pourra utiliser, transformer ou revendre les biens vendus qu'avec notre accord préalable.

RÉCLAMATIONS

Les réclamations concernant les quantités doivent nous parvenir dans un délai maximum de cinq jours à dater de la réception du matériel.

TRANSPORT

Toutes nos marchandises voyagent aux risques et périls des destinataires, même si leurs prix avaient été calculés pour une livraison franco. En cas d'avaries, de mélanges ou de manquants, les acheteurs devront exercer leurs recours contre les transporteurs.

RETOURS

Tout retour doit faire l'objet d'une demande écrite et est subordonné à notre accord préalable. Un avoir sera établi au prix de la facturation hors frais de port et d'emballage, diminué de 25%, à la condition expresse que le matériel nous soit retourné franco EN PARFAIT ÉTAT DE NEUF (ni réusiné, ni détérioré, ni repeint, ni rouillé, etc.). Aucun retour ne sera accepté pour du matériel dont la valeur est inférieure à 50 € HT net.

GARANTIE

Elle est limitée au remplacement pur et simple des pièces reconnues par nous défectueuses sans donner lieu, à aucune indemnité. Le port des réparations est à la charge de l'acheteur.

CONTESTATION

Nos conditions générales de vente sont susceptibles de modification sans préavis. Le Tribunal de commerce de Paris est seul compétent, quels que soient les conditions de vente et le mode de paiement acceptés et même s'il y a pluralité de défendeurs ou appel de garantie. Ni nos traites et dispositions, ni notre acceptation en paiement de chèques ou effets quelconques sur une autre ville que Saint-Denis n'opèrent novation ou dérogation à cette clause attributive de juridiction. En cas de vente à l'étranger, le contrat sera régi par la loi française.

PROTECTION DES DONNÉES

Prud'homme Transmissions utilise à titre professionnel certaines informations fournies par ses clients ou prospects. Conformément à la loi Informatique et Liberté de 06.07.78, modifiée en 2004, le client bénéficie d'un droit d'accès aux données qui le concernent et de rectification, en contactant par courrier Prud'homme Transmissions 25 chemin d'Aubervilliers 93203 Saint-Denis. Conformément à la loi LCEN, l'enregistrement en ligne de ces données permet à Prud'homme Transmissions de recueillir l'autorisation d'envoyer des courriels aux utilisateurs inscrits.

SAS Capital 770.000 € - RC BOBIGNY B 326 073 368 - SIRET 326 073 368 00028 - APE 4669B - N°IDENTIFICATION TVA : FR 45 326 073 368

TABLE DES MATIÈRES

Chaînes à rouleaux 6	Roues Libres						
Tendeurs à billes	Non autocentrées						
Éléments tendeurs	Autocentrées RLE & RLD						
Tendeurs "Spannbox" 9	Autocentrées RLP						
Bases Moteur							
Pignons de chaînes simples préalésés	Compactes						
Courroies trapézoïdales	Hautes performances						
XPZ E - XPA E	Crémaillères						
XPB E - XPC E - 3VX E - 5VX E	Vis trapézoidales						
SPZ E - SPA E - SPB E - SPC E - 3V/5V/8V E15	Écrous de vis trapézoidales						
ZE-AE	Vis d'archimède modulaires						
BE-CE-DE							
Courroies en nappe	Glissières recommandations générales						
A/HA E - B/HB E - C/HC E - D/HD E	Guidage linéaire						
SPZ E - SPA E - SPB E - SPC E - 3V E - 5V E19	Vérins à vis trapézoïdales						
Courroies POLY-V	Exemples d'utilisation de vérins à vis						
H/PH E - J/PJ E - K/PK E - L/PL E - M/PM E20	Présentation générale de la gamme vérins à vis50						
Courroies synchrones	Accessoires de vérins à vis						
2M/3M/5M E							
8M/20M/14M E	Pour série WTEMC - WDAXC						
MXL E - XL E	Pour série VVDAXC						
L E - H E - XH E - XXH E	Pour série VVTEMC, VVDAXC & VVTEMC54						
T2,5 E - T5 E - T10 E - T20 E	Soufflets VVTEMC & VVDAXC						
AT5 E - AT10 E - AT20 E	Autres accessoires						
S2M E - S3M E - S4,5M E - S5M E	Accouplements DENTEX						
S8M E - S14M E							
Plaques de fixation pour courroies ouvertes28	Accouplements élastiques SPIDEX 58-59						
Courroies en rouleaux	Accouplements CENTA						
Courroies à double denture	Accouplements élastiques à ressort						
DXLE-DLE	Cardans plastiques						
D H E - D XH E - D XXH E - D 8M E - D 14M E 31	Bagues de blocage «Moyeu/Arbre»						
Poulies VTP	Motoréducteurs économiques PH						
Courroies de variateur							
Poulies variables à l'arrêt	Motoréducteurs économiques PHM						
Poulies variables	Bagues d'arrêt fendues						

EXTRAIT DE CATALOGUE 2015 PRUD'HOMME TRANSMISSIONS

Présents depuis 1860 et répercutant l'évolution de la technique, nous n'avons cessé de développer, de manière exclusive et toujours plus poussée, notre spécialisation dans le domaine des transmissions essentiellement mécaniques.

Pour vous assurer dans les meilleurs délais un service technique de qualité, réel et complet, notre politique est basée sur :

Notre CATALOGUE, VÉRITABLE OUTIL TECHNIQUE de TRAVAIL et de COMMUNICATION

pour vos Bureaux d'Études, vos Ateliers, vos Services Achats, Fabrication, Maintenance.

Notre catalogue, version papier ou CDrom, consultable sur Internet et sur les applications disponibles sur *Applestore*® et *Andoid Market*® présente en 12 chapitres nos gammes de pièces standard ou en réalisation spéciale, enrichies de références et de produits nouveaux.

• Notre STOCK CONSIDÉRABLE ADAPTÉ à VOS BESOINS

Un atout essentiel, à la fois, pour nos délais de livraison très rapides sur la France entière et pour la rapidité de vos réalisations, de vos dépannages, de votre maintenance.

 Notre SÉLECTION de COMPOSANTS de QUALITÉ RÉGULIÈRE et FIABLE DANS LE TEMPS

la VASTE DIVERSITÉ et COMPLÉMENTARITÉ TECHNIQUE de nos GAMMES STANDARD ou en EXÉCUTION SPÉCIALE

Nos INGÉNIEURS, nos ÉQUIPES COMMERCIALES et leur COMPÉTENCE TECHNIQUE

en mesure de

- Répondre exactement et rapidement à vos besoins quotidiens
- Dégager avec vous parmi nos produits la solution technique, économique ou ingénieuse la plus appropriée
- Mettre en fabrication vos pièces spéciales selon vos plans et spécifications
- Analyser sur place avec vous, si nécessaire, un problème complexe techniquement ou impliquant un investissement important.
- Nos EXPÉDITIONS QUOTIDIENNES sur la FRANCE ENTIÈRE à réceptionner par vos établissements le lendemain matin avant midi.

Voici VOTRE CATALOGUE, il reflète notre exigence de réactivité et de qualité technique.

Feuilletez le avec attention, questionnez nous, c'est le véritable moyen de constater que PRUD'HOMME TRANSMISSIONS répond à votre attente.

Cette démarche commune nous vaut depuis longtemps déjà une grande fidélité de notre clientèle et nous vaudra également votre confiance.

En cette attente, cordialement à Vous

Avec l'Ensemble de nos Collaborateurs à votre écoute et à votre service

Sylvie ROBERT Quitterie ROBERT-BOUR Christophe BOUR

CE CATALOGUE EST UN EXTRAIT

Il a été conçu pour vous présenter d'une façon succincte les nouveautés dans la gamme de composants que nous tenons à votre disposition. Les caractéristiques qui y figurent vous permettent :

- dans les cas d'éléments ou d'appareils simples de faire directement votre choix ;
- dans les cas d'appareils plus complexes de juger si, dans la gamme proposée, s'inscrit celui qui vous est nécessaire. Pour tous ces articles, nous disposons, en général, de notices détaillées qui, elles, vous permettront de décider en toute connaissance de cause.

Au surplus, nos techniciens sont toujours à votre disposition pour vous faire profiter de leur expérience et vous guider dans votre choix.

MODIFICATIONS TECHNIQUES

Les leçons de l'expérience et l'apparition de technologies nouvelles conduisent à modifier plus ou moins les produits et, parfois même, à abandonner certaines séries au profit de tout nouveaux modèles, beaucoup plus performants.

Il est donc possible que certaines caractéristiques des éléments du catalogue aient changé depuis sa parution ou que certains articles aient été remplacés par de plus évolués. Nous nous réservons donc le droit de modifier sans préavis les caractéristiques des éléments offerts ou de leur en substituer de nouveaux.

Pour cette raison, en cas d'étude de produits devant être lancés en grande série, nous recommandons à notre clientèle de prendre contact avec nous pour s'informer des modifications éventuellement survenues, ou à survenir.

Au cas où des coquilles existeraient dans le texte, nous nous en excusons par avance.

Vous offrir des éléments instantanément disponibles, telle est la base de notre politique commerciale.

Le sigle ci-dessus matérialise cette volonté et, tout au long de notre catalogue, les articles couramment tenus en stock sont visiblement signalés.

Il est toutefois inévitable que certains éléments soient parfois manquants (carence de fournisseurs, manque de matière première, grève des transports, de la douane, ou commandes importantes qui vident nos rayons). Nous ne voudrions pas être taxés... de publicité mensongère lorsqu'une telle rupture de stock se produit.

De convention expresse les pièces commandées sous des références de marques autres que celles que nous diffusons seront livrées à l'équivalent dans les marques figurant à notre programme.

RESPONSABILITÉ DE NOS TECHNICIENS

Ainsi qu'il est expliqué en détail, en pages 3 et 4 de notre catalogue complet disponible sur www.prudhomme-trans.com, une foule de facteurs conditionne la marche des machines et le choix de leurs éléments constitutifs.

Bon nombre de ces facteurs sont très aléatoires et difficilement chiffrables (chocs, accélérations et freinages répétés, bourrages, ...). D'autres, au surplus, par oubli ou par ignorance de leurs répercussions nocives ne sont même pas évoqués.

Des calculs basés sur des évaluations parfois fort éloignées de la réalité, bien que sincères, ne peuvent conduire qu'à des conclusions très approximatives, à contrôler impérativement par des essais répétés en conditions réelles d'utilisation. Notre responsabilité ne saurait donc être engagée, dans de telles circonstances par les choix suggérés.

GRAISSAGE À VIE

Cette expression très ou même trop couramment employée, doit être relativisée.

Des conditions de travail particulièrement adverses, des fuites éventuelles peuvent avoir raison du meilleur graissage.

Tout échauffement anormal et persistant, toute apparition de vibrations inhabituelles, etc..., doivent donner l'alerte. Un remplacement du lubrifiant, un changement de roulements... peuvent s'avérer indispensables.

PUISSANCES "NOMINALES" ET PUISSANCES ABSORBÉES... RÉELLEMENT.

Tout au long de ce catalogue, il est offert des éléments destinés à transmettre à la fois, puissance et mouvement

mais, quelle puissance?

Les performances concernant les éléments de transmissions proprement dits sont, en général, indiquées avec précision : elles résultent d'essais mécaniques, de passage au banc d'essai et sont donc fiables. Mais ce ne sont que des valeurs nominales qu'il faut interprêter et qui ne peuvent être prises en compte qu'affectées d'un coefficient minorateur - parfois très important - directement fonction des conditions d'utilisation. Ces éléments de transmissions sont intercalés dans une chaîne cinématique plus ou moins complexe, autrement dit, entre une source motrice et une machine entraînée.

A - LA SOURCE MOTRICE

est, en général, bien connue. Sa puissance, ses performances, ses qualités et ses défauts propres sont, en pratique, chiffrés avec précision par son constructeur. En l'occurrence, les " défauts " sont surtout à ne pas méconnaître.

- S'il s'agit de moteurs électriques, et notamment des moteurs asynchrones triphasés
- Les plus courants de tous leur démarrage en court circuit est d'une brutalité notoire, à la longue dommageable à l'ensemble de la chaîne cinématique.

A ce sujet, il ne saurait être trop insisté sur l'effet bénéfique de tous les systèmes (d'ailleurs offerts dans ce catalogue) assurant un démarrage progressif, donc doux mécaniquement parlant, et économique par réduction de l'appel de courant au démarrage : démarreurs électroniques, embrayages centrifuges, coupleurs hydrauliques ou à poudre, etc...).

- S'il s'agit de moteurs thermiques et surtout de DIESEL, ils engendrent à certaines vitesses, dites critiques, des vibrations extrêmement sèches et des phénomènes de résonance, très nocifs et très destructeurs s'il n'est mis obstacle à leur propagation.

Il est capital - pour la longévité de l'ensemble mécanique - de les annihiler " à la source ", le moyen le plus efficace étant de choisir un accouplement spécialement étudié.

Ce choix - très délicat - ne peut être fait qu' avec le concours de spécialistes

le contact avec notre bureau technique est - à nos veux - une nécessité absolue

Ce recours, en attirant votre attention sur les points délicats, vous évitera de nombreux tâtonnements, du temps perdu, et diminuera considérablement votre risque d'échec.

B - LA MACHINE ENTRAÎNÉE

Quelle puissance réclame-t-elle ?

La puissance nominale nécessaire est en général, indiquée par le constructeur, mais elle n'est qu'une base de départ, car de nombreux facteurs affectent la marche de la machine et font subir à son appel de puissance des pointes plus ou moins importantes.

Les uns sont connus, catalogués, par exemple :

- Les chocs provoqués par les démarrages, les arrêts,

les inversions de marche et dont la répercussion est proportionnelle à leur fréquence, vibrations, phénomènes de résonance. etc.

- La durée du temps de travail.

mais bien d'autres sont aléatoires et difficilement évaluables, bien que devant être considérés comme normalement liés au travail de la machine et de ce fait inévitables :

À-coups, bourrages, irrégularités dans l'alimentation de la machine, incidence de la température ambiante, de l'échauffement, irrégularités dans la viscosité des produits traités,...

Il faut aussi tenir compte des incidents ou des accidents qui peuvent intervenir. Ces évènements n'influent pas sur la puissance absorbée mais il est indispensable d'en protéger la machine par des "dispositifs de sécurité" mécaniques (limiteurs de couple, débrayages automatiques, goupilles de rupture...) électriques ou électroniques. Notre catalogue en offre tout un choix. Même remarque pour le rendement, influencé au surplus par tous les éléments annexes (poulies, roulements, graissage, vitesse, montage, etc), leurs jeux respectifs qui s'additionnent, ...

TOUS CES FACTEURS SONT DIFFICILEMENT CHIFFRABLES, ET NE SONT SOUVENT ÉVALUÉS QUE PAR APPROXIMATION. IL PEUT EN RÉSULTER DES SURPRISES DÉSAGRÉABLES.

Lemeilleurordinateur, alimentéen données incomplètes, ne peut conduire qu'à un mauvais choix.

IL EST DONC INDISPENSABLE

Lorsqu'il s'agit d'un matériel à construire en série, de soigneusement vérifier par des essais répétés en conditions réelles d'utilisation la validité du choix effectué, éventuellement même avec incidents provoqués.

A seule fin d'éveiller votre attention sur tous ces aléas, nous donnons, dans notre catalogue complet, quelques chiffres qui montrent que, parfois, les puissances nominales sont à multiplier par un coefficient 4 ou même plus, pour obtenir la puissance réellement nécessaire.

Mais - nous le répétons - ces chiffres n'ont qu'une valeur tout à fait relative.

UTILISEZ L'E-MAIL OU LE FAX AU MAXIMUM

Les conversations téléphoniques (et certaines sont parfois très longues...) se concentrent aux mêmes heures de la journée, d'où attentes souvent prolongées, pertes de temps et, bien sûr, énervement et mécontentement.

Interrogez-nous par e-mail à chaque fois que vous le pouvez. Non seulement un document écrit accompagné d'un plan est beaucoup plus intelligible - notamment pour les données chiffrées - qu'une conversation téléphonique mais, surtout le technicien qui reçoit cet e-mail peut l'étudier et vous donner des renseignements très précis dans sa réponse, ce qui est, en général, impossible à l'impromptu, au téléphone.

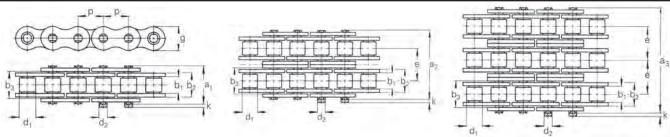
TRES IMPORTANT

Pour l'e-mail ou le fax, attention à la lisibilité de l'original

notamment pour les plans, souvent à trop petite échelle, et avec des chiffres et des lettres de cotes trop petits et devenant illisibles à la réception. Ces chiffres illisibles sont la principale cause de nos réclamations et des rejets par les Bureaux d'Etudes. Donc... temps perdu.

Eviter à tout prix les papiers colorés ou avec trame de fond. Eviter les stylos à encre bleue.

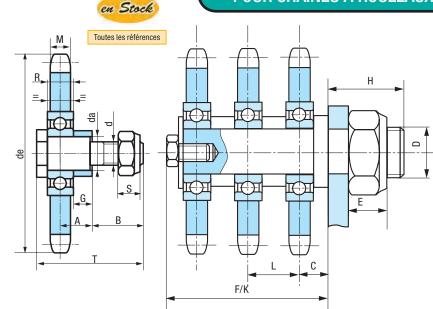
Pour l'envoi de plans, privilégier l'envoi par e-mail au format .dxf, .pdf ou .step.


CHAÎNES À ROULEAUX

- Standard (ISO 9001)
- Hautes Performances (ISO 9001)

SÉRIE EUROPÉENNE

LA SÉRIE EUROPÉENNE correspond aux normes : ISO R 606 - N.F.E. 26.102 - B.S. 228-1970 - DIN 8187 Température - 10 à + 100°C.


Températures plus basses ou plus hautes envisageables (+250°C) avec graisse spéciale : Nous consulter.

a ₁	d										d ₁	-	-d2			
	ÎNE SII						OUE	LE				-	TRIPL	Æ		
1	nouvel	au		Dési	gnati	on	CRE o	u CR ou	CRHP	Réf. IS	O (ex	x. CRE-	-10B1E	Ξ)		
C. A		Série		PAS	Larg int		Diam roul					Surface travail axes		R (kN)		Poids
en Stock Les dimensions tramées	Économique ELPEX	Standard	Haute Performance	Р	b1	b2	d1	d2	g	k	a1	S	CR-E	CR	CR-HP	
Eco dinionolo d'amoso	Écono ELPEX	Stan	Ha Perfor	mm	mini	maxi	maxi	h9	maxi	maxi	maxi	cm ²	OII-L	On	OII-III	kg/m
CHAÎNES ISO 9001	CRE	CR	CR-HP	CH				voir page 2 voir page 1								
	05 B-1E	-	-	8,0	3,0	9,5	5,0	2,31	7,0	-	8,7	-	4,4	-	-	0,19
		-	E2*	9,53	3,94	6,7	6,35	3,28	9,0	3,3	11,6	0,22	-	-	10,5	0,36
Rouleaux	06 B-1E	06 B-1	06 B-1	9,53	5,72	8,53	6,35	3,28	8,26	3,3	13,5	0,28	8,9	9,0	10,1	0,41
STANDARD Longueur 5 m.	- 00 D 1E	- 00 D 1	E6*	12,7	5,21	8,7	8,51	4,45	11,81	3,9	15	0,39	17.0	- 10.0	18,2	0,62
* Série étroite	08 B-1E	08 B-1	08 B-1 E10*	12,7 15,87	7,75 6,48	11,3 10,08	8,51 10,16	4,45 5,08	11,81 14,73	3,9 4,1	17 16,4	0,5 0,51	17,8	18,0	19,0 28,2	0,7 0,78
hors norme	10 B-1E	10 B-1	10 B-1	15,87	9,65	13,28	10,16	5,08	14,73	4,1	19,6	0,51	22,2	22,4	28,4	0,78
	12 B-1E	12 B-1	12 B-1	19,05	11,68	15,62	12,07	5,72	16,13	4,6	22,7	0,89	28,9	29,0	32,5	1,18
OIMADI EO	16 B-1E	16 B-1	16 B-1	25,4	17,02	25,45	15,88	8,28	21,08	5,4	36,1	2,1	60	60,0	76,5	2,5
SIMPLES	20 B-1E	20 B-1	20 B-1	31,75	19,56	29,01	19,05	10,19	26,42	6,1	43,2	2,95	95	95,0	108,0	3,5
	24 B-1E	24 B-1	24 B-1	38,1	25,4	37,92	25,4	14,63	33,4	6,6	53,4	5,54	160	160,0	185,5	6,8
*Existe en	28 B-1E	28 B-1	28 B-1	44,45	30,99	46,58	27,94	15,9	37,08	7,4	65,1	7,4	200	200,0	237,0	8,5
maillons droits	32 B-1E	32 B-1	32 B-1	50,8	30,99	45,57	29,21	17,81	42,29	7,9	67,4	8,11	250	250,0	276,0	10,5
	40 B-1E 48 B-1E	-	40 B-1 48 B-1	63,5 76,2	38,1 45,72	55,75 70,56	39,37 48,26	22,89 29,24	52,96 63,88	10,2 10,5	82,6 99,1	12,76 20,63	360 540	-	406,0 600,0	16,8 25,5
	i			Pas	45,72	a2	\$	23,24	R(kN)	10,5	<i>'</i>	20,03				20,0
	CRE	CR	CR-HP	mm	е	maxi	cm ²	CR-E	CR	CR-HP	kg/m		MA	ILLC)NS	
	05 B-2E	-	-	-	8,0	14,34	-	7,8	-	-	-		RAC	CCO	RDS	
	06 B-2E	06 B-2	06 B-2	9,53	10,24	23,8	0,55	16,9	16,9	17,7	0,78	Dás				I ^
Cotes	08 B-2E	08 B-2	08 B-2	12,7	13,92	31,0	1,0	31,1	32,0	39,0	1,36	Dés			Réf. c	naine
b1-b2-d1-d2-g-k	10 B-2E	10 B-2	10 B-2	15,88	16,59	36,2	1,34	44,5	44,5	55,0	1,82		(6	ex.: AR	05B1)	
voir	12 B-2E	12 B-2	12 B-2	19,05	19,46	42,2	1,78	57,8	57,8	65,0	2,38				~	3
chaînes simples	16 B-2E	16 B-2	16 B-2	25,4	31,88	68,0	4,21	106,0	106,0	149,5	5,1	(1				
	20 B-2E	20 B-2	20 B-2	31,75	36,45	79,7	5,91	170,0	170,0	217,5	7,3	6	SA		(A)	(A)
DOUBLES	24 B-2E	24 B-2	24 B-2	38,1	48,36	101,8	11,09	280,0	280,0	366,0	13,4	AD .	pas 31,7	5	AG ≥ pas	20 1
	28 B-2E 32 B-2E	-	28 B-2 32 B-2	44,45 50.8	59,56 58,55	124,7 126,0	14,81	360,0 450,0		469,0 560,0	16,6 21,0	An≤	pas 51,73	3	Au ≥ µas	30,1
	32 D-2E	-	40 B-2	63,5	72,29	154,9	25,52	450,0		506,0	33,4				~	
	<u> </u>		48 B-2	76,2	91,21	190,4	41,26			1100.0	50,0				(n_	n)
				Pas		a3	S		R(kN)	1.00,0	Ĺ	6	=			11
TRIPLES	CRE	CR	CR-HP	mm	е	maxi	cm ²	CR-E	CR	CR-HP	kg/m		- W		D	0
	05 B-3E	-	-	-	11,28	20,0	-	11,1	-	-	-	(0			(0	0)
	06 B-3E	06 B-3		9,53	10,24	34	0,83	24,8	23,6	23,7	1,18					
	08 B-3E	08 B-3		12,7	13,92	44,9	1,5	46,65	47,5	57,5	2,01	MI : to	ous pas		MER : tou	ıs pas
	10 B-3E	10 B-3			16,59	52,8	2,02	66,7	66,7	82,0	2,7		Con	ıs de la cl	haîno	
	12 B-3E	12 B-3			19,46	61,7	2,68	86,7	86,7	96,5	3,12	1.0	▼ 361	io ue la Ul	idille,	
	16 B-3E	16 B-3	16 B-3		31,88	99,9	6,32	160	160,0	231,0	7,3		-			
	20 B-3E 24 B-3E	-	20 B-3			116,1	8,86 16,64	250 425		315,0 520,0	10,6	5		Q	(0)	3
	28 B-3E	-	24 B-3 28 B-3		48,36 59,56		22,21	520		640,0	20,0 25,0	6	FAX	0	AP	***
	32 B-3E	-	32 B-3		58,55		24,34	507		800,0	32,0	0	10)		(88)	
1	32 B-3E	-	40 B-3		72,29		38,28	301		1140,0	50,5	MCD	< pas 19	05	MCS > pa	as 25 /
	<u> </u>		48 B-3		91,21								< pas 19 :haînes A		et toutes	
			⊥ 4× K-3	1/n 2	91.21	∠ŏ1.b	61,89	I	I	1700,0	76,0	oaui t	παιπτο Α	UΠ	טנ נטענט ו	$\neg \cup \neg$

TENDEURS À BILLES

POUR CHAÎNES À ROULEAUX

AVEC ROULEMENTS À BILLES ÉTANCHES LUBRIFIÉS À VIE.

SUR COMMANDE DISPONIBLES EN INOX

Le roulement à billes est emmanché à la presse dans le disque denté mais il est monté librement sur l'axe.

Au montage, et après serrage de l'écrou de sécurité, l'entretoise vient serrer latéralement la bague intérieure du roulement et l'immobilise

Température maxi d'utilisation: 80°C

Série TB

complets prêts à l'emploi avec axe décolleté entretoise et écrou de sécurité

Série TBN

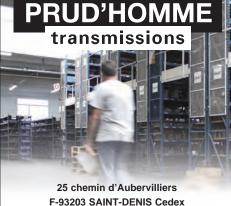
pignons tendeurs nus avec roulement à billes étanche mais sans axe ni écrou de sécurité

Page 6

Réf.		Pour chaîne	Dents	DE	M	d	da	Α	В	G	R	s	Т	Bras tendeur
Hon.	Pas	Réf. ISO	Delita	-		, u	uu			4		•		conseillé
TB 00	5		17	29,7	2,2	6	6	7	15	4	6	6	28	
TB 0	6		15	31,7	2,3	6	6	7	15	4	6	6	28	SE 11
TB 05B	8	05 B	14	39,6	2,6	8	8	7,5	16	4	7	8	30	
TB 06B	9,5	06 B	17	56	5	10	12	12	22	7	10	10	44	
TB V4	12,7	81	13	59	3	10	12	12	22	7	10	10	44	SE 15
TB V5	12,7	Largeur int.: 4,88	13	59	4,5	10	12	12	22	7	10	10	44	SE 13
TB 08BE	12,7	08 B	17	73	7	10	12	12	22	9	20	10	44	
TB 08B	12,7	08 B	17	73	7	12	17	15	26	9	12	12	53	
TB 10B	15,8	10 B	16	88	9	12	17	15	26	9	12	12	53	SE 18 - SE 27
TB 12B	19,05	12 B	14	94	11	12	17	15	26	9	12	12	53	
TB 16B	25,4	16 B	12	111	15	20	20	25	28	18	14	20	66	
TB 20B	31,7	20 B	12	139	18	24	30	39,5	50	30	19	24	114	SE 38 - SE 45
TB 24B	38,1	24 B	12	163	24	36	40	49,5	74	38	23	29	153	

TENDEURS POUR CHAÎNES DOUBLES ET TRIPLES

essus


Ces tendeurs sont réalisés à partir des pignons simples TBN ci-dessus et montés sur des axes spéciaux avec entretoise E 2. * Sauf TB08BE

Série B2 = pour chaînes doubles (cote F)

Série B3 = pour chaînes triples (cote K)

Réf. pour chaîne double*	Réf. pour chaîne triple	Pas chaîne	C	D	E	F	Н	K	L	Bras tendeur conseillé
TB 06B2	TB 06B3	9,5	12	12	12	34	35	44	10,24	SE 18
TB 08B2	TB 08B3	12,7	15	18	18,5	43	45	57	13,92	SE 27
TB 10B2	TB 10B3	15,8	15	20	20	46	45	63	16,59	SE 38
TB 12B2	-	19,05	15	20	20	49	45		19,46	SE 38
TB 16B2	-	25,4	24	24	23	72	55		31,88	SE 45

Tél. 01 48 11 46 00 - Fax 01 48 34 49 49

www.prudhomme-trans.com

info@prudhomme-trans.com

3 0 0 0

Toujours tendre sur 3 dents au minimum et sur le brin mou

AXES SEULS AVEC ENTRETOISE ET ÉCROU DE SÉCURITÉ AMEE

ÉLÉMENTS TENDEURS

À BRAS ET EMBASE

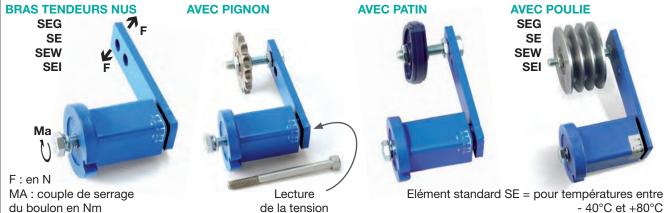
Fixation frontale - Eléments galvanisés, en WOX, ou résistants à la chaleur

Spécialement conçus pour servir de tendeurs, ils peuvent tout aussi bien convenir pour une foule d'autres besoins (grattoirs, racleurs, galets de contact, verrouillage par pression...). Le réglage de la pression se fait par rotation de l'embase dont la fixation est réalisée par une unique vis (qu'il convient de serrer au couple Ma indiqué dans les tableaux ci-dessous).

Ce mode de fixation donne donc pour l'embase, une plage de réglage de 360°.

Une échancrure permet - si nécessaire - de bloquer l'embase dans une position déterminée.

Il est à noter la valeur de serrage au couple maximale indiquée (Ma) intègre un coefficient de sécurité de 2.


Angle d'oscillation maximum : 30° de chaque côté de la position d'équilibre du levier.

Une échelle graduée permet de lire l'angle de déviation du levier.

Lors du montage, cela évite d'éventuels tâtonnements.

Un tableau (page 431 du catalogue général) indique la valeur de la pression ou de la tension pour les différents angles du levier. Ces tendeurs sont totalement automatiques; ils évitent les battements des chaînes ou des courroies, mais aussi, ils absorbent les vibrations et donc atténuent le bruit.

Ils s'installent directement sur le bâti de la machine. L'équerre WS aide à leur adaptation est disponible en stock.

S max. Ma

Poids Galva. .11 .12 **Frontal** (N) G H• M N Inox **SEG** norm dur (Nm) SFW SFI SFF norm. dur norm dur 5 M 6 **SE 11** SEG - 11 106 40 30 35 51-0,5 80 60 20 90 10 0,2 80 20 22 6 8 5 8,5 SE 15 SEG - 15 SEW - 15 SEI - 15 SEF - 15 135 168 50 40 45 64-0.5 5 M 8 100 80 25 112,5 25 30 8 8,5 6 10,5 25 | 0.4 **SE 18** | SEG - 18 | SEW - 18 | SEI - 18 | SEF - 18 350 437 50 40 58 78-0,5 6 M 10 100 80 30 115 30 35 10,5 8.5 8 10,5 49 0,6 SE 27 SEG - 27 SEW - 27 SEI - 27 SEF - 27 86 | 1,7 800 1040 65 50 78 107-0.5 7 M 12 130 100 50 155 40 49 15 10,5 10 12,5 SE 38 | SEG - 38 | SEW - 38 | SEI - 40 | SEF - 38 | 1875 87.5 70 95 140-20,5 10 M 16 175 140 60 205 66 15 12 20.5 210 3.55 1500 40 12.5

12 M 20

20 M 24

225 180

250 200 80

70 260

50 80 18

60 78 20

■ F max. pour tous les types, sauf SEW (dont les valeurs doivent être diminuées de 40%)

3250

5000 125

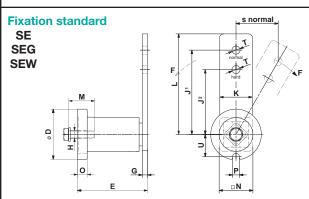
• Les valeurs de H,M et Ma sont différentes en fixation frontale (voit tableau spécifique au type SEF)

90 115 200

100 130 210

Δ Les valeurs relatives à la gamme (SEI) sont sensiblement différentes (nous questionner)

112,5


SE-B «Boomerang» à 2 bras et compensation triple (voir page 432 du catalogue général)

12 | 20,5 | 410 | 6,4

17 20,5 750 9

12,5

17

SEF - 45

SEF -150

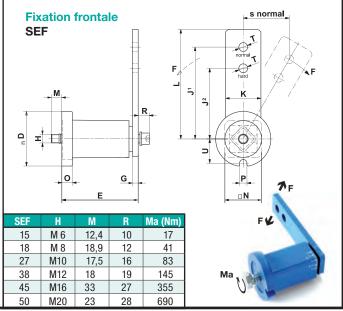
2600

4000

NOUVEAU: 2 trous sur le levier («Normal» ou «dur»)

SE = standard (SE 11 à 27 en fritté

SE 45 | SEG - 45 | SEW - 45


SE 50 SEG - 50 SEW - 50

SE 38 à 45 en fonte GG - SE 50 en Acier

SEG = éléments galvanisés (point jaune)

SEW = résistant à la chaleur (+80°C à +120°C) (point rouge) (caoutchouc spécial)

SEI = corps en acier inoxydable

TENDEURS "SPANNBOX" À PATIN GLISSIÈRE

EN MATIÈRE PLASTIQUE ANTIFRICTION " NO FRIX "

ENCOMBREMENT RÉDUIT AUTOMATIQUES - SIMPLES RÉGLABLES

SANS ENTRETIEN - SILENCIEUX

Températures admissibles de -10 à $+60^{\circ}$ C Vitesse linéaire maxi = 1 m/sec.

Détails sur le " NO FRIX " voir notice glissières et www.nofrix.fr Patins symétriques convenant donc dans les 2 sens de marche Peu encombrants faciles à installer et à changer

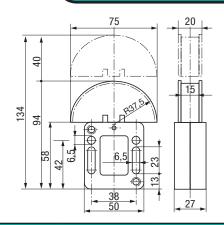
Semelle de fixation

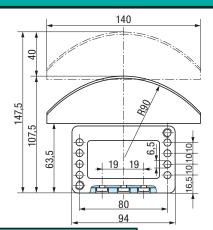
Patin " NO FRIX " AA amovible

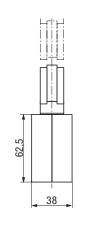
Profilé métallique où s'encastre seulement

le patin

Piston coulissant dans le boîtier et soumis à la pression de 3 ressorts (sauf N° 0 et B)


Boîtier rectangulaire


3 vis de réglage permettent un ajustage de la pression (Sauf N° 0)


SPANNBOX N°0

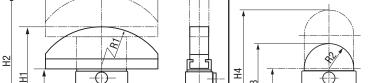
SPANNBOX N°30

À BOÎTIER ET PISTON EN MATIÈRE PLASTIQUE TROUS DE FIXATION SUR LE BOÎTIER

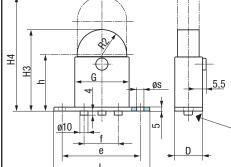
DDECCIONC EVED	PEEC DAD LEC DECCORTE AM	м
PRESSUINS EXER	CÉES PAR LES RESSORTS en	

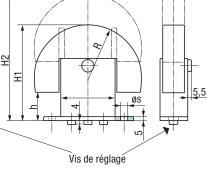
	Pression ressorts to	talement comprimés	Pression en fin de course			
SPANNBOX	N° O	N° 30	N° O	N° 30		
1 ressort actif	58	132	32	60		
2 ressorts actifs	-	264	-	120		
3 ressorts actifs	-	396	-	180		
Masse (kg)	0,14	0,4	0,14	0,4		

RESSORTS NOW SUR DEMANDE


SPANNBOX N°1 & N°2

PATIN TYPE AA


PATIN TYPE DR


PATIN TYPE PR

Les vis de réglage permettent de libérer un ou plusieurs ressorts de telle façon qu'à volonté, le piston subit la pression de un seul, deux ou trois ressorts. Les laisser accessibles au montage.

Ď

									-			-							
Туре	H1	H2	НЗ	H4	T	h	G	D	L	е	S	f	R1	R2	SP. BOX	H1	H2	h	R
N°1	118	158	97	137	140	66	67	35	115	97	8,5	42	90	31	N°1	122	162	20	70
N°2	149	209	143	203	200	86	120	40	180	155	11,0	76	150	57	N°2	165	225	40	100

BASES MOTEUR À TENSION AUTOMATIQUE

POUR MOTEURS ÉLECTRIQUES DE 0.75 à 250 kW

De la tension correcte des courroies dépend directement le rendement et la longévité d'une installation.

Une courroie s'allonge inévitablement avec le temps (jusqu'à 6% pour les courroies trapézoïdales) d'où :


- patinage des courroies
- mauvaise transmission de puissance (kW perdus inutilement)
- échauffement de la courroie entraînant sa mort prématurée
- usure anormale des gorges des poulies.

Notre support à bascule compense non seulement cet allongement de façon rigoureusement continue, mais aussi, il absorbe et supprime les battements provoqués par exemple par l'alimentation irrégulière de la machine entraînée (broyeur, compresseur,...).

De même, il atténue la brutalité caractéristique du démarrage des moteurs triphasés. Les tendeurs traditionnels à réglage par vis n'assurent pas la correction permanente des divers aléas ci-dessus évoqués.

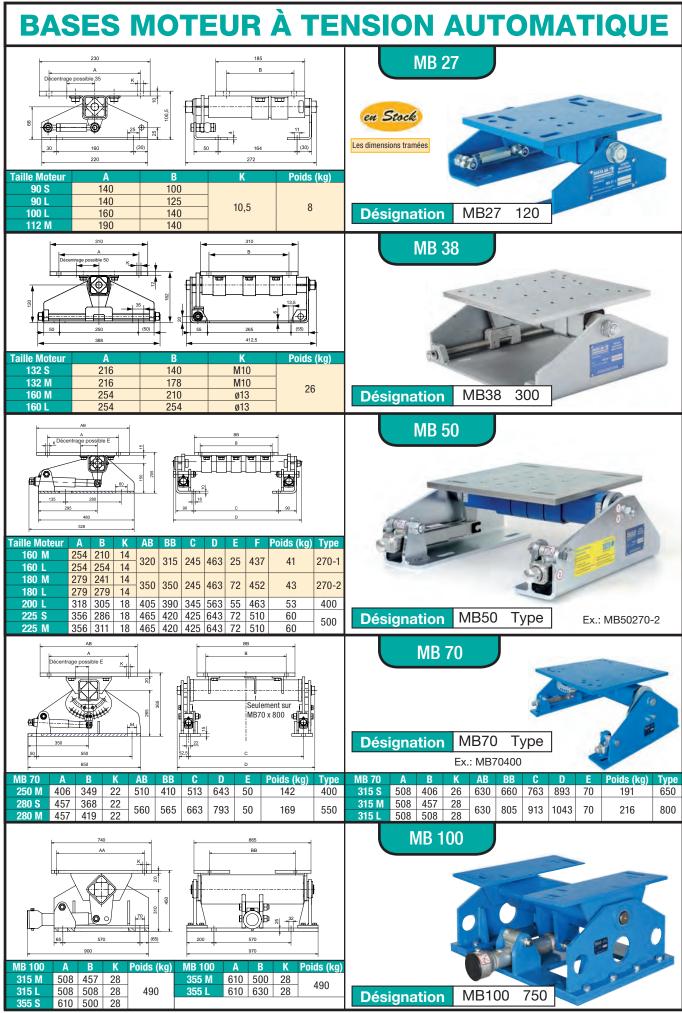
Ces bases sont livrées en position centrée avec possibilité de décentrage

Principe de nos socles tendeurs automatiques

L'élément de base de nos appareils est un tendeur de type ROSTA dont l'effet *ressort* résulte de la compression de 4 blocs de caoutchouc entre 2 tubes carrés décalés.

Pour une description détaillée de ces éléments Rosta, voir notre catalogue général. Fabriqués à des millions d'exemplaires, ces blocs ROSTA sont d'une fiabilité confirmée et ne réclament aucun entretien.

Ces blocs élastiques sont opérationnels jusqu'à \pm 30° de leur position de repos. Ils permettent donc le réglage exact de la tension des courroies à la valeur conseillée par leurs fabricants et leur maintien sous précontrainte.

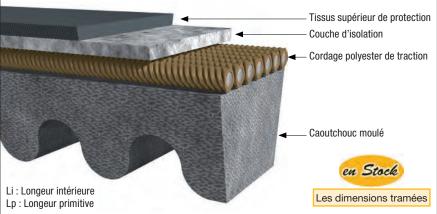

Choix du socle

Chaque référence de socle (voir page suivante) correspond à un type précis de moteur normalisé et la plaque destinée à recevoir ce moteur est percée aux dimensions exactes de l'embase de fixation du moteur.

D'où simplicité totale de montage.

Le châssis du socle comporte différents systèmes de réglage selon la taille choisie qui permettent de faire travailler la transmission sous l'angle optimal et de régler la tension des courroies à la valeur préconisée pour un rendement maximum.

Dimension	Puissance r	noteur (kW)		Dimension	Puissance i	moteur (kW)	
cadre moteur	1000 tr/mn moteur 6 pôles	1500 tr/mn moteur 4 pôles	Type de support	cadre moteur	1000 tr/mn moteur 6 pôles	1500 tr/mn moteur 4 pôles	Type de support
90\$	0,75	1,1		225S	-	37	MB 50 × 500
90L	1,1	1,5	MB 27 × 120	225M	30	45	UUC X UC AINI
100L	1,5	2,2 - 3	WIB 27 × 120	250M	37	55	MB 70 × 400
112M	2,2	4		280S	45	75	MD 70 550
132S	3	5,5		280M	55	90	MB 70 × 550
132M	4 - 5,5	7,5	MB 38×300	315S	75	110	MB 70×650
160M	7,5	11	IVID 30 × 300	315M	90 - 110	132 - 160	MB 70×800
160L	11	15		315L	110 - 160	160 - 200	IVID /U×0UU
160M	7,5	11	MB 50 × 270-1	315M	90 - 110	132 - 160	
160L	11	15	IVID 30 × 270-1	315L	110 - 160	160 - 200	
180M	-	18,5	MB 50 × 270-2	355S	132 - 160	200 - 250	MB 100×750
180L	15	22	IVID 3U × 2/U-2	355M	200 - 250	250	
200L	18,5 - 22	30	MB 50 × 400	355L	200 - 250	250	



PIGNONS DE CHAÎNES SIMPLES PRÉALÉSÉS **DENTURE TREMPÉE TRAITÉE** ALÉSÉS ET RAINURÉS AVEC TROU TARAUDÉ SUR LE MOYEU pas nb. dents AT Ex.: PCR06B16AT18R M Désignation PCR Alésage R 16 17 18 06B 43,5 46,5 58,3 61,6 64,3 67,6 73,7 76,7 79,7 85,7 25 à 31 28 34 37 40 43 45 46 48 52 54 57 60 12 ш 15 16 18 D Pas 9⁵²⁵ E=5.3mm 24 28 32 35 38 13 14 15 16 18 19 21 24 DENTS 20 23 25 82,0 85,8 90,1 98,1 102,1 105,8 114,0 126,3 08B 61,6 65,9 69,0 74,0 77,8 53,9 57,9 D M 37 41 45 50 52 56 60 64 68 70 70 70 70 12 14 15 18 19 20 Pas 127 22 24 E=7,2mm 28 30 32 12 13 14 15 16 17 18 19 20 21 DENTS 23 25 **ALESAGES** D 68,2 73,2 78,2 83,2 M 42 à 51 47 52 57 10B 88 | 93,2 | 98,3 | 103,3 | 108,4 | 113,4 | 123,4 | 128,5 | 133,5 60 60 70 70 75 80 80 80 A H7 b H9 75 h 16 $1,8^{+0,1}_{-0}$ M 4 19 20 16 18 2,8 M 5 19 Pas 15⁸⁷⁵ 2.8 M 5 en Stock 28 30 E=9,1mm Toutes les 35 M 6 références 38 M 6 M 8 3,3[±] 40 10 DENT 14 15 16 18 19 20 38 M 8 10 12**B** 87,1 93,8 99,2 105,5 111,2 118,0 123,3 129,7 135,4 147,4 154,1 159,5 D 81,8 40 M 10 M 52 58 64 70 75 80 80 80 | 80 | 90 | 90 M 10 20 22 3,8+ 48 24 Ces pignons simples de dimensions 30 Pas 19⁰⁵ comparables aux pignons standard 32 35 E=11,1 sont "prêts à l'emploi" grâce à la dismm ponibilité sur stock d'un large choix de 40 42 45 dimensions, tant pour leur nombre de dents que pour les alésages disponibles. 48 50 Leur denture est de plus trempée par TS 12 13 14 15 16 17 18 19 20 21 23 D 109,7 117,2 125,7 133,3 141,0 149,4 157,0 165,5 173,2 181,6 198,1 DENTS induction (HRC 45 à 53 Profondeur 16B 214.2 de trempe 0,6 à 1mm); ils possèdent 69 78 84 92 100 100 100 100 | 100 110 110 110 25 également une rainure de clavette 28 30 normalisée (DIN 6885) ainsi que deux trous filetés à 90° pour vis de serrage Pas 254 (non fournie). E=16,240 mm La clavette est toujours alignée avec 42 une dent afin d'améliorer la tenue du 45 pignon.

COURROIES TRAPÉZOÏDALES nouveau

XPZ E

Ces courroies économiques sont adaptées à des applications moins exigeantes que celles nécessitant des courroies hautes performances présentées dans les pages précédentes.

Elles sont fabriquées dans une usine qui produit également des courroies, depuis plus de deux décennies, pour certains des plus grands manufacturiers mondiaux. Elles utilisent des composants (câblage, toiles ...) fabriqués par les meilleurs fournisseurs mondiaux qui assurent une qualité optimale.

Elles offrent ainsi un excellent rapport qualité prix qui en font une alternative à considérer pour certaines de vos applications.

Elles sont stockées même dans des dimensions importantes tant en longueur qu'en section.

Désignation XPZ + Taille (Li) + E Ex: XPZ710E

10mm

				Li				
512	762	950	1140	1320	1537	1782	2060	2800
587	787	962	1147	1337	1550	1800	2080	2840
600	800	987	1162	1362	1562	1812	2120	3000
612	812	1000	1180	1387	1587	1837	2160	3150
630	837	1012	1187	1400	1600	1850	2240	3170
637	850	1037	1202	1412	1612	1862	2280	3350
662	862	1047	1212	1420	1637	1887	2360	3550
670	875	1060	1237	1437	1650	1900	2410	
687	887	1077	1250	1450	1662	1937	2487	
710	900	1087	1262	1462	1687	1950	2500	
722	912	1112	1270	1487	1700	1987	2540	
737	925	1120	1287	1500	1750	2000	2650	
750	937	1137	1312	1512	1762	2030	2690	

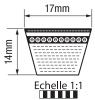
	XPZ E	XPA E	XPB E	XPC E	3VX E	5VX E
Masse linéaire courroie (kg/m)	0,07	0,11	0,2	0,32	0,08	0,22
Ø mini poulie (mm)	50	63	100	160	67	180
Vitesse maxi courroie (m/s)	50	50	50	50	50	50

XPA E

			Li			
707	957	1232	1507	1850	2282	2832
732	975	1250	1532	1857	2300	2847
747	982	1272	1550	1882	2332	2882
757	1000	1282	1557	1900	2360	2900
770	1007	1307	1582	1907	2382	2932
782	1032	1320	1600	1932	2430	2982
800	1060	1332	1607	1950	2482	3000
807	1082	1357	1632	1957	2500	3150
832	1090	1367	1650	1982	2532	3350
850	1107	1382	1657	2000	2582	3550
857	1120	1400	1682	2032	2607	3750
882	1132	1407	1700	2060	2632	4000
900	1140	1432	1732	2082	2650	4250
907	1150	1450	1757	2120	2682	4500
925	1157	1457	1782	2132	2732	
932	1180	1482	1800	2182	2782	
950	1207	1500	1832	2240	2800	

Désignation

XPA + Taille (Li) + E


Ex: XPA707E

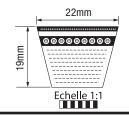
COURROIES TRAPÉZOÏDALES

XPB E

	<u> </u>
14mm	000000000
	Echelle 1:1

Désignation	XPB + Taille (Li) + E
--------------------	-----------------------

Ex: XPB1250E


					Li					
1250	1400	1510	1660	1840	2040	2220	2400	2680	3110	3750
1260	1410	1540	1690	1850	2100	2240	2410	2730	3150	4000
1280	1430	1550	1700	1870	2120	2280	2430	2800	3170	4250
1320	1450	1590	1720	1900	2150	2300	2500	2840	3320	4500
1340	1460	1600	1740	1950	2160	2350	2530	2900	3340	4550
1360	1480	1640	1750	2000	2170	2360	2600	2990	3350	
1380	1500	1650	1800	2020	2200	2380	2650	3000	3550	

XPC E

Désignation

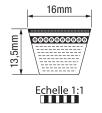
XPC + Taille (Li) + E Ex: XPC2120E

Li	Li	Li	Li	Li
2000	2450	3000	3750	4450
2120	2500	3150	4000	4500
2240	2650	3350	4250	4750
2360	2800	3550	4300	5000

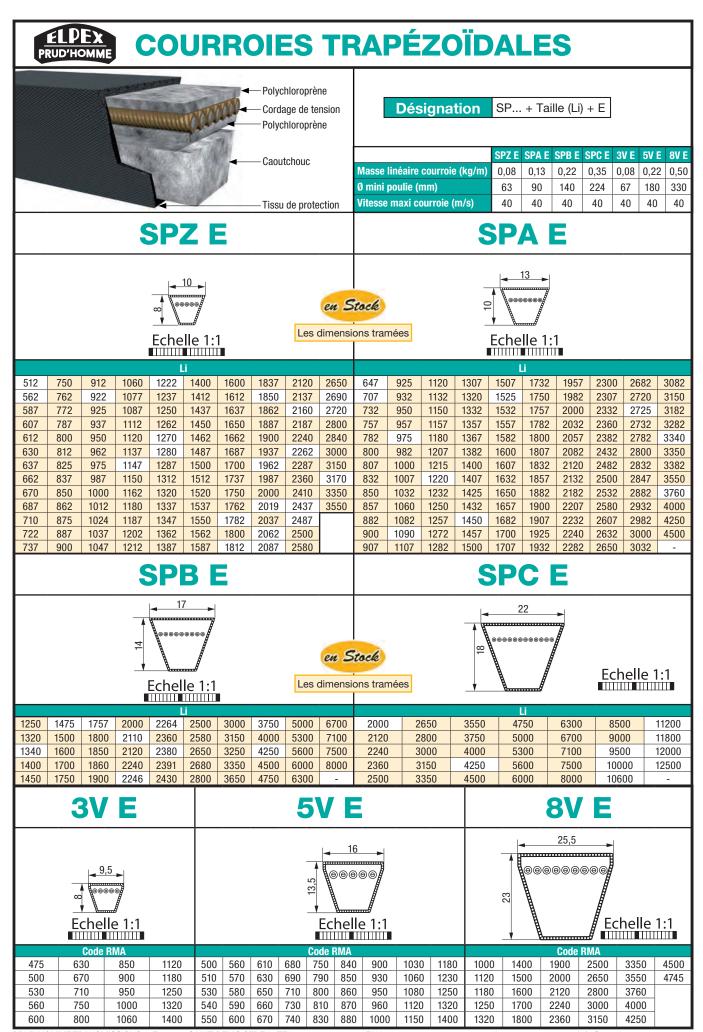
3VX E

3VX + Taille (Li) + E **Désignation**

Ex: 3VX1000E

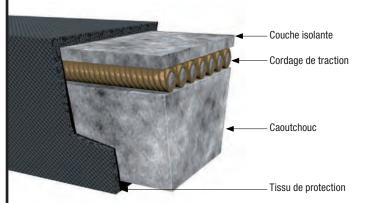

		Li		
643	963	1433	2173	3183
683	1025	1533	2293	3363
723	1090	1613	2423	3563
775	1150	1713	2553	
813	1215	1813	2703	
863	1283	1913	2853	
913	1350	2043	3013	

5VX E


Désignation 5VX + Taille (Li) + E Ex: 5VX1000E

	Li 1152 1402 1612 1862 2142 2432 2922													
1152	1402	1612	1862	2142	2432	2922								
1202	1432	1662	1892	2172	2452	3012								
1252	1452	1682	1922	2192	2552	3132								
1282	1482	1712	2022	2222	2622	3192								
1302	1502	1742	2042	2242	2702	3372								
1362	1532	1762	2062	2302	2752	3572								
1382	1562	1822	2122	2372	2862									

	XPZ E	XPA E	XPB E	XPC E	3VX E	5VX E
Masse linéaire courroie (kg/m)	0,07	0,11	0,2	0,32	0,08	0,22
Ø mini poulie (mm)	50	63	100	160	67	180
Vitesse maxi courroie (m/s)	25	25	25	25	25	25



COURROIES TRAPÉZOÏDALES

ZE

Les dimensions tramées

Désignation

Taille (Li) E

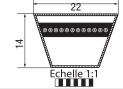
Ex: Z1412E (pour 14^{1/2})

	2 E	AE	DE	UE	νE
Masse linéaire courroie (kg/m)	0,05	0,12	0,19	0,32	0,67
Ø mini poulie (mm)	50	75	125	200	355
Vitesse maxi courroie (m/s)	30	30	30	30	30

								0.10	ooo iiidaa	, o.o.	, 0,	00	00	00	00
Code	Li	Code	Li	Code	Li	Code	Li								
11	290	21	540	271/2	700	331/2	852	39	1000	47	1194	59	1499	70	1775
12 ^{1/2}	355	211/2	545	28	710	34	865	40	1016	48	1225	59 ^{1/2}	1515	71	1803
14	381	213/4	555	281/2	725	341/4	870	401/2	1030	49	1245	60	1520	72	1829
15	400	22	560	29	730	341/2	876	41	1040	50	1270	61	1549	75	1900
16	410	221/4	565	291/2	750	35	890	41 ^{1/2}	1050	51	1300	62	1575	78	1975
17	432	23	585	30	762	35 ^{1/2}	900	42	1070	52	1320	63	1600	79	2000
17 ^{1/2}	445	233/4	605	301/2	775	36	915	43	1090	53	1346	64	1620	831/2	2120
18	460	24	610	303/4	785	36 ^{1/4}	920	431/4	1100	54	1371	65	1651	88	2240
19	480	25	635	31 ^{1/2}	800	36 ^{3/4}	935	44	1120	55	1400	66	1675	93	2360
19 ^{1/2}	500	25 ^{1/2}	650	32	815	37	940	45	1143	56	1422	67	1702	98	2500
20	515	26	660	321/2	825	38	965	46	1168	57	1450	68	1735		
201/2	520	27	685	33	840	381/2	975	46 ^{1/2}	1180	58	1475	69	1750		

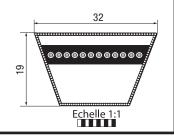
AE

Dé	signa	tion	ΖT	Taille (Li	i) E	Ex: A28E										
Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	
15	382	291/2	750	39 ^{1/2}	1000	50	1270	67	1700	85	2160	105	2667	138	3505	
16	407	30	762	40	1016	51	1300	68	1725	86	2187	107	2718	140	3550	
17	432	301/2	775	401/2	1030	51 ^{1/2}	1307	69	1750	87	2212	108	2743	142	3606	
18	457	31	787	41	1041	52	1320	70	1775	88	2240	109	2768	144	3658	
19	480	311/2	800	411/2	1050	52 ^{1/2}	1337	71	1800	89	2267	110	2800	146	3710	
20	508	32	813	42	1067	53	1346	72	1825	90	2286	112	2845	147	3737	
21	535	321/2	825	421/2	1075	53 ^{1/4}	1355	73	1854	91	2311	113	2870	148	3759	
213/4	552	33	838	43	1092	54	1372	74	1880	92	2337	115	2921	158	4000	1
22	560	331/2	850	431/2	1105	55	1400	75	1905	93	2360	116	2946	162	4115	∞
23	587	34	863	44	1120	56	1422	76	1930	94	2388	118	3000	167	4250	1
231/2	600	341/2	875	441/2	1132	57	1450	77	1956	95	2413	120	3048	173	4394	
24	610	35	890	45	1143	58	1475	78	1980	96	2438	122	3099	176	4470	
25	637	35 ^{1/2}	900	45 ^{1/2}	1150	59	1500	79	2000	97	2464	124	3150	177	4500	
25 ^{1/2}	647	36	914	46	1168	60	1525	80	2032	97 ^{1/2}	2475	126	3200	187	4750	
26	660	36 ^{1/2}	927	46 ^{1/2}	1180	61	1550	81	2060	98	2490	127	3226	197	5000	
261/2	670	37	940	47	1194	62	1575	82	2083	99	2515	128	3250	210	5334	
27	686	371/2	953	47 ^{1/2}	1215	63	1600	83	2100	100	2540	130	3302	217	5477	
271/2	700	38	965	48	1220	64	1625	831/2	2120	102	2591	132	3350	221	5613	
28	710	381/2	978	481/2	1232	65	1650	84	2134	103	2616	134	3404	223	5664	
29	737	39	990	49	1250	66	1676	841/2	2150	104	2641	136	3454			L



COURROIES TRAPÉZOÏDALES

BE


	D	ésign	ation		В Со	de E		x: B1	11212E	(pour	112 ½)						
Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li
22 ^{1/2}	570	37	942	52	1320	72	1829	96 ^{1/2}	2450	128	3250	165	4200	240	6096	512	13000
23	587	371/2	950	52 ^{1/2}	1335	73	1850	97	2465	130	3302	167	4250	248	6300	551	13995
24	612	38	965	53	1350	74	1880	971/2	2477	131	3327	168	4267	249	6325	553	14046
241/2	622	381/2	978	53 ^{1/2}	1360	75	1900	98	2500	132	3350	169	4292	253	6426	583	14808
25	637	39	990	54	1372	76	1930	99	2515	133	3378	173	4394	255	6477	612	15545
26	660	39 ^{1/2}	1000	55	1400	77	1956	100	2540	134	3407	175	4450	259	6579		
26 ^{1/2}	670	40	1016	55 ^{1/2}	1412	78	1981	101	2565	135	3429	177	4500	265	6730		
27	686	401/2	1030	56	1422	79	2000	102	2600	136	3450	180	4572	270	6858		
28	710	41	1040	57	1450	80	2032	103	2616	138	3505	186	4727	276	7010		
29	737	41 ^{1/2}	1050	58	1473	81	2060	104	2641	140	3550	187	4750	280	7112		
291/2	750	42	1067	59	1500	82	2083	105	2667	142	3607	192	4877	285	7240		
30	762	421/2	1075	60	1525	83	2108	106	2700	144	3658	195	4953	300	7620		17
301/2	775	43	1090	61	1550	831/2	2120	107	2718	146	3709	197	5000	315	8000	1	
31	787	431/4	1100	62	1575	84	2134	108	2750	147	3737	200	5080	330	8382	\⊕⊕⊕	00000
32	800	44	1120	63	1600	85	2160	110	2800	148	3750	201	5105	345	8763	=	
321/4	822	441/4	1127	64	1625	86	2187	112	2845	150	3810	204	5182	360	9146	1	
321/2	825	45	1142	65	1650	87	2215	112 ^{1/2}	2857	151	3850	208	5285	361	9170	Ech	elle 1:1
33	838	45 ^{1/2}	1163	66	1676	88	2240	114	2900	152	3861	210	5334	364	9245		
331/2	850	46	1168	661/4	1682	89	2261	115	2921	154	3912	212	5385	366	9296		
34	863	461/2	1180	661/2	1692	90	2286	116	2950	155	3950	214	5436	374	9500		
341/2	875	47	1194	67	1700	91	2312	118	3000	156	3962	217	5507	394	10008		
343/4	880	47 ^{1/4}	1200	641/4	1712	92	2337	119	3023	157	3987	220	5588	428	10885		
35	889	48	1207	68	1725	93	2360	120	3048	158	4000	224	5690	433	11000	000	Stock
35 ^{1/2}	900	48 ^{1/2}	1220	69	1750	94	2388	122	3100	160	4064	225	5715	449	11400	en =	SLOCK
35 ^{3/4}	907	49	1250	691/2	1761	941/2	2400	124	3150	161	4087	228	5792	472	11990		
36	917	50	1275	70	1775	95	2413	126	3200	162	4115	229	5816	488	12400	Les dimens	ions tramées
36 ^{3/4}	937	51	1300	71	1800	96	2438	127	3227	163	4142	237	6020	510	12960		

l	Designation C Code E Ex: C3314E (pour 33 ^{1/4})																	
Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	Code	Li	
331/4	858	57	1448	73	1854	90	2286	108	2750	136	3456	168	4267	222	5638	270	6858	
37 ^{1/2}	950	58	1473	74	1880	91	2311	110	2800	138	3505	170	4318	223	5664	280	7112	
39	990	58 ^{1/2}	1486	75	1905	92	2336	111	2818	140	3550	173	4394	225	5715	285	7240	
391/4	1013	59	1500	76	1925	93	2360	112	2845	142	3607	175	4445	228	5792	295	7500	
41	1045	60	1524	77	1956	94	2388	112 ^{1/2}	2858	144	3658	177	4500	230	5842	300	7620	
42	1067	61	1550	78	1981	95	2413	114	2896	145	3682	180	4572	236	5995	315	8000	
43	1090	62	1574	79	2006	96	2438	115	2921	146	3708	185	4699	240	6096	316	8025	
45	1143	621/4	1583	80	2032	96 ^{1/2}	2450	116	2950	147	3733	187	4750	248	6300	345	8763	
46	1168	63	1600	81	2057	97	2462	117	2971	148	3750	190	4826	255	6477	350	8890	
47	1200	65	1650	82	2082	971/2	2477	118	3000	150	3810	193	4900	260	6604	394	10008	
48	1220	66	1676	83	2108	98	2489	120	3048	152	3860	195	4953	265	6700			
49	1250	67	1702	831/2	2120	99	2525	122	3100	153	3902	197	5004		-	22	-	
51	1295	68	1727	84	2134	100	2540	124	3150	158	4000	204	5182		1			
52	1320	69	1753	85	2159	101	2560	126	3200	160	4064	208	5285		00000000000			
53	1350	70	1778	86	2184	102	2591	128	3250	162	4115	210	5334		4			
54	1375	71	1804	87	2208	104	2642	130	3302	165	4193	212	5384				/	
55	1400	71 ^{1/2}	1816	88	2235	105	2667	132	3350	166	4216	216	5486		_+	Fchelle 1	# 1 · 1	

	Des	signat	ion	D C	ode E						
Code	Li Code Li			Code	Li	Code	Li	Code	Li	Code	Li
120	3048	162	4115	197	5004	282	7163	360	9144	480	12192
135	3429	167	4242	225	5715	295	7239	385	9779	570	14478
144	3658	170	4318	240	6096	314	7976	390	9906		
152	3860	177	4496	250	6350	315	8000	394	10008		
154	3912	180	4572	255	6477	316	8026	441	11200		
158	58 4013 195 4953		4953	270	6858	354	8992	450	11430		

COURROIES EN NAPPE

Ces courroies sont constituées par la juxtaposition de courroies standard (A, B.... SPA, SPB...) rendues solidaires par le collage des courroies sur une bande de tissus renforcé

Ce montage permet

- De limiter les phénomènes de battement des courroies,
- D'avoir une élongation régulière de toutes les courroies
- De limiter l'usure superficielle des courroies dans le cas d'utilisation d'un tendeur de courroies

Veillez à vérifier l'écartement des gorges de vos poulies afin de vous assurer qu'elles sont adaptées au montage de ces courroies qui sont aux normes européeenes ; certaines poulies montées sur d'anciennes machines peuvent être aux normes RMA (nous consulter)

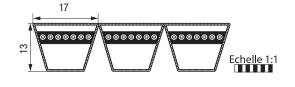
Principales applications

Broyeurs, cribles, concasseurs, compresseurs, machines agricoles Utilisation de -20°C à +80°C en pointe.

	A/HA E	B/HB E	C/HC E	D/HD E
Masse linéaire courroie (kg/m)	0,168	0,265	0,435	0,786
Ø mini poulie (mm)	80	130	210	390
Vitesse maxi courroie (m/s)	30	30	30	30
Nb maxi de brins	20	16	12	9

Désignation

Code	Li	Code	Li	Code	Li	Code	Li
47	1200	67	1700	100	2540	158	4000
51	1300	71	1800	104	2641	167	4250
56	1422	75	1900	112	2845	187	4750
57	1450	79	2000	116	2946		
59	1500	88	2240	118	3000		
64	1625	98	2490	144	3658		

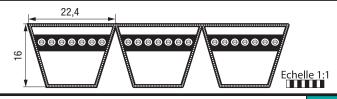

B/HB

Désignation

B ou HB Taille (Li) E Nb brins

A ou HA Taille (Li) E Nb brins

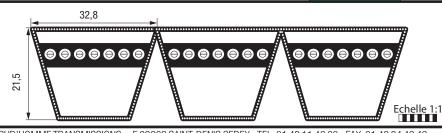
Ex: A47E3

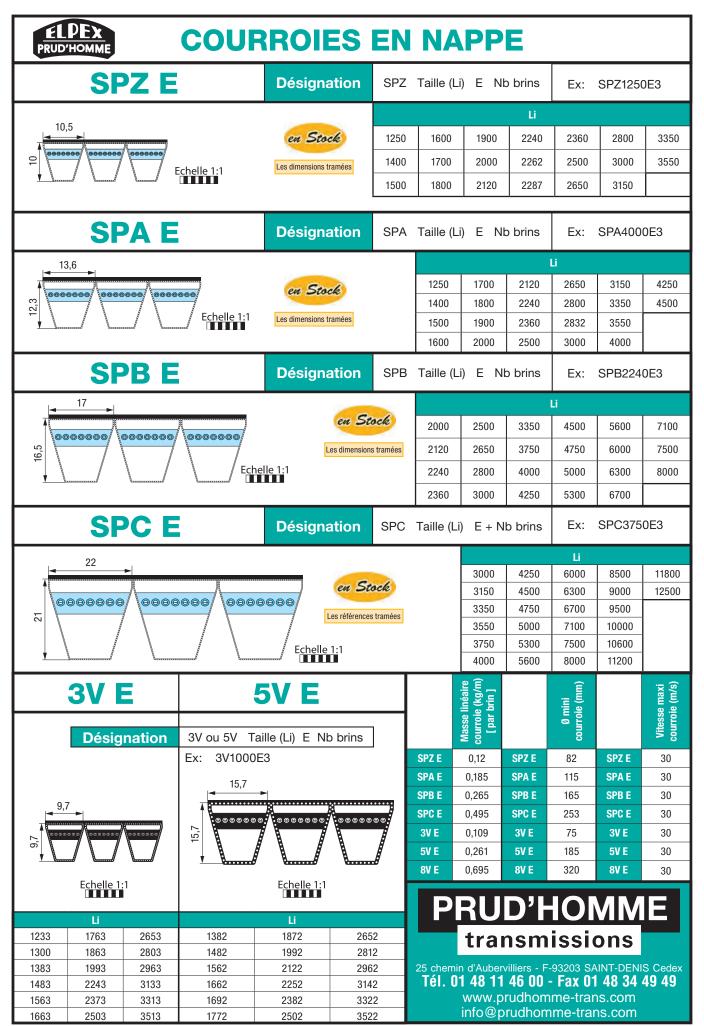

Coue	LI Goue		L	Coue	L	Coue	_
47	1194	71	1800	106	2700	158	4000
471/4	1200	73	1850	112	2845	167	4250
51	1300	75	1900	118	3000	177	4500
55	1400	79	2000	120	3048	187	4750
59	1500	83	2108	128	3250	197	5000
61	1550	91	2312	132	3350	208	5285
63	1600	941/2	2400	140	3550	220	5588
64	1625	98	2500	146	3709		
67	1700	102	2600	1/12	3750		

C/HC E

Désignation

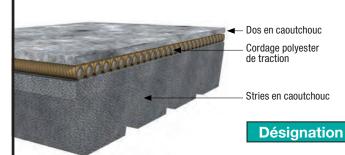
C ou HC Taille (Li) E Nb brins


Ex: C120E3


Code	Li	Code	ü	Code	Ŀ
90	2286	139 ^{3/4}	3550	187	4750
98	2489	146	3708	197	5004
1081/4	2750	157 ^{1/2}	4000	208	5285
120	3048	167 ^{1/4}	4250	220	5588
128	3250	177	4500	248	6300

D/HD

Désignation D ou HD Taille (Li) E Nb brins Ex: D120E3



Code	L	Code	LI
120	3048	255	6477
144	3658	270	6858
158	4013	315	8000
162	4115	360	9144
180	4572	390	9906
195	4953	450	11430
225	5715	480	12192
240	6096		

COURROIES POLY-V

.. Taille (Li) E Nb de brins Ex: PJ1016E8

Ces courroies allient une grande souplesse à une bonne résistance à la fatigue, l'usure et aux chocs ; elles permettent donc de réaliser des transmissions compactes et économiques ; leur épaisseur leur assure une bonne durabilité même en cas d'utilisation avec un galet tendeur sur le dos de la courroie.

Applications: Electroménager

Bétonnières (nous consulter pour des courroies élastiques)

	H/PH E	J/PJ E	K/PK E	L/PL E	мрм Е
Masse linéaire courroie/ <u>brin</u> (kg/m)	0,005	0,01	0,02	0,04	0,118
Ø mini poulie (mm)	10	20	45	75	180
Vitesse maxi courroie (m/s)	80	60	60	40	30
Nb standard de brins		4 - 6 - 8	- 10 - 12	-16 - 20)
Nb maxi de brins	330	225	65	50	25

H/P	HE	J	/P	J	E	K/P	KE	L/P	LE	M/PM E			
1,6	eur effective	1 - E		Stock		3.65		Les dime	Stock Insions tramées	9,4			
L	.e		L	.e		Le	Le	L	e	L	.e		
197	1904	356	1016	1300	1981	560	1425	954	2134	2286	7646		
207	1915	381	1041	1309	1992	575	1520	991	2197	2388	8408		
222	1922	406	1067	1321	2083	582	1600	1075	2235	2515	9169		
234	1930	432	1092	1333	2210	597	1660	1270	2324	2693	9931		
285	1940	457	1105	1355	2337	648	1700	1333	2362	2832			
307	1945	483	1118	1371	2489	655	1815	1371	2477	2921			
425	1975	508	1123	1397	ļ	698	1900	1397	2515	3010			
432	2337	559	1130	1428		710	2030	1422	2705	3124			
457	ļ	584	1136	1439		775	2100	1562	2743	3327			
483	ļ	610	1143	1473		818	2205	1613	2845	3531			
529	ļ	711	1150	1549]	875	2330	1664	2895	3734			
594	ļ	723	1168	1600		915	2480	1715	2921	4089			
1200	ļ	737	1194	1651		970	2680	1765	2997	4191			
1210	_	762	1200	1663		1000		1803	3086	4470			
1265		813	1222	1752]	1030		1842	3125	4648			
1578		838	1233	1854		1095		1943	3289	5029	 		
1830		864	1244	1895		1125		1981	3327	5410	 		
1869	_	914	1262	1910		1230		2019	3493	6121	 		
1885		955	1270	1930]	1295		2070	3696	6502	 		
1900	1900 965 1280 1956					1360		2096	-	6883			

Le catalogue de référence de la transmission mécanique en France sur **iPad**®!

Catalogue

- Catalogue en ligne

- Demande de catalogue

- Archives catalogue

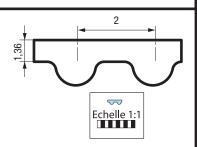
- Mises à jour catalogue

Consultez les dernières mises à jour de notre catalogue.

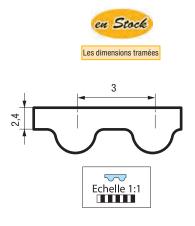
Produits

Découvrez les nouveaux produits ! Utilisez les données techniques les plus à jour !

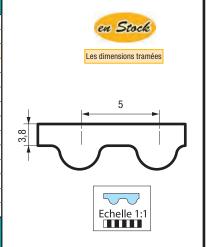
nouveau


Désignation

2 ou 3 ou 5ME largeur Ex: 982ME9


2M

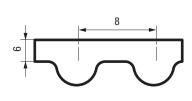
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
98	49	132	66	154	77	184	92	214	107	270	135	360	180	506	253	1224	612
100	50	134	67	158	79	190	95	216	108	280	140	388	194	560	280		
102	51	140	70	160	80	194	97	236	118	310	155	448	224	660	330	Larç	geur
112	56	146	73	162	81	204	102	250	125	328	164	460	230	750	375	standard : 3 / 6 9 mm	
120	60	150	75	176	88	208	104	260	130	336	168	488	244	984	492		
130	65	152	76	180	90	210	105	264	132	340	170	494	247	1066	533		


3M E

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
60	20	165	55	222	74	291	97	366	122	483	161	606	202	753	251	1800	600
81	27	168	56	225	75	300	100	375	125	486	162	609	203	801	267	1950	650
87	29	171	57	228	76	306	102	384	128	492	164	612	204	804	268	2160	720
90	30	174	58	234	78	309	103	390	130	495	165	630	210	813	271	2388	796
102	34	177	59	237	79	312	104	396	132	501	167	633	211	843	281	2640	880
111	37	180	60	240	80	318	106	399	133	510	170	639	213	885	295	3000	1000
117	39	186	62	246	82	324	108	420	140	513	171	648	216	939	313	3210	1070
120	40	189	63	252	84	333	111	423	141	522	174	654	218	1071	357	3390	1130
129	43	192	64	255	85	336	112	426	142	531	177	669	223	1125	375	6804	2268
141	47	195	65	264	88	339	113	447	149	537	179	675	225	1176	392		
144	48	198	66	267	89	342	114	459	153	558	186	684	228	1209	403	Larc	10UF
150	50	201	67	270	90	345	115	462	154	564	188	699	233	1245	415	stand	
153	51	204	68	276	92	348	116	471	157	576	192	708	236	1263	421	6	9
156	52	207	69	282	94	357	119	474	158	579	193	711	237	1344	448		20
159	53	210	70	285	95	360	120	477	159	582	194	720	240	1401	467	30 mm	
162	54	213	71	288	96	363	121	480	160	597	199	750	250	1569	523		

5M E

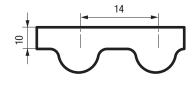
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
180	36	325	65	430	86	560	112	690	138	835	167	1125	225	1525	305	2370	474
200	40	330	66	440	88	570	114	695	139	850	170	1145	229	1595	319	2460	492
210	42	340	68	445	89	575	115	700	140	860	172	1175	235	1690	338	2525	505
215	43	345	69	450	90	585	117	710	142	870	174	1180	236	1700	340	3025	605
225	45	350	70	460	92	590	118	715	143	890	178	1195	239	1730	346	3060	612
235	47	360	72	470	94	600	120	725	145	900	180	1200	240	1790	358	3255	651
250	50	365	73	475	95	610	122	740	148	920	184	1210	242	1800	360	3430	686
255	51	370	74	480	96	620	124	745	149	925	185	1225	245	1870	374	3660	732
265	53	375	75	500	100	625	125	750	150	935	187	1270	254	1945	389	3750	750
275	55	380	76	505	101	630	126	755	151	950	190	1290	258	2000	400	3770	754
280	56	385	77	510	102	635	127	770	154	960	192	1350	270	2050	410	3800	760
285	57	395	79	520	104	640	128	775	155	975	195	1375	275	2100	420	4260	852
295	59	400	80	525	105	645	129	790	158	980	196	1380	276	2160	432	5300	1060
300	60	405	81	530	106	650	130	800	160	1000	200	1400	280	2165	433	7000	1400
305	61	410	82	535	107	655	131	810	162	1025	205	1420	284	2200	440		jeur
310	62	420	84	540	108	665	133	825	165	1050	210	1455	291	2250	450	standard : 9 / 15 / 20	
320	64	425	85	550	110	675	135	830	166	1100	220	1500	300	2350	470	25 / 3	

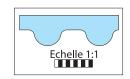

Désignation Lp 8 ou 14 ou 20 ME largeur

Exemple: 5128ME25

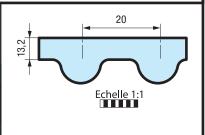
8M E

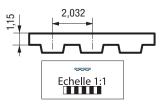
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
184	23	520	65	720	90	920	115	1152	144	1392	174	1760	220	2328	291	5600	700
288	36	536	67	728	91	928	116	1168	146	1400	175	1784	223	2400	300	5960	745
328	41	560	70	736	92	944	118	1184	148	1424	178	1792	224	2504	313	6600	825
336	42	568	71	760	95	952	119	1200	150	1440	180	1800	225	2600	325	6880	860
368	46	576	72	776	97	960	120	1216	152	1456	182	1856	232	2736	342	7600	950
376	47	584	73	784	98	968	121	1248	156	1480	185	1896	237	2800	350		
384	48	600	75	792	99	976	122	1256	157	1512	189	1904	238	3048	381		
400	50	608	76	800	100	1000	125	1264	158	1520	190	1936	242	3120	390		
416	52	624	78	816	102	1016	127	1272	159	1536	192	2000	250	3168	396		
424	53	632	79	824	103	1040	130	1280	160	1552	194	2080	260	3200	400	Larç stanc	
440	55	640	80	840	105	1056	132	1304	163	1576	197	2096	262	3280	410	20	25
448	56	656	82	856	107	1080	135	1312	164	1600	200	2104	263	3400	425	5	O mm
472	59	680	85	864	108	1104	138	1328	166	1648	206	2136	267	4000	500	00	
480	60	688	86	872	109	1120	140	1344	168	1680	210	2208	276	4200	525		
496	62	696	87	880	110	1128	141	1352	169	1696	212	2240	280	4400	550		
512	64	712	89	896	112	1136	142	1360	170	1728	216	2304	288	5120	640		



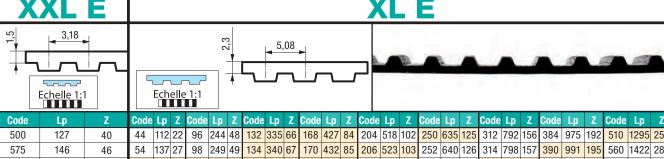


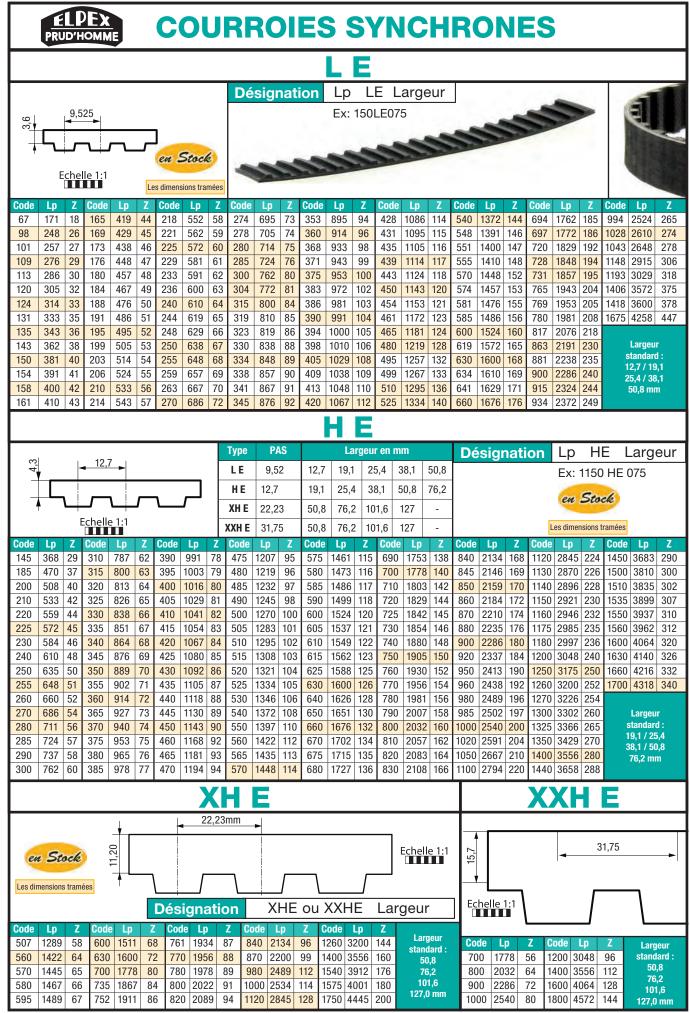
14M E


Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
966	69	1246	89	1414	101	1540	110	1778	127	2002	143	2800	200	3850	275	5040	360
1036	74	1260	90	1442	103	1568	112	1806	129	2100	150	3108	222	4326	309	5740	410
1064	76	1288	92	1456	104	1610	115	1820	130	2240	160	3150	225	4536	324	6160	440
1092	78	1316	94	1470	105	1652	118	1890	135	2310	165	3304	236	3178	227	6860	490
1120	80	1344	96	1484	106	1750	125	1932	138	2450	175	3360	240	4760	340	7560	540
1190	85	1400	100	1512	108	1764	126	1960	140	2590	185	3500	250	4956	354	-	-
					L	argeur	standar	d: 40 /	55 / 85	/ 115 /	175 m	m					

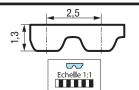

20M E

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
2000	100	3200	160	3400	170	4200	210	5000	250	5400	270	5600	280	6000	290	6400	320
2500	125	3220	161	3800	190	4600	230	5200	260	5500	275	5800	290	6200	310	6600	330
				L	.argeur	standa	rd : 70	/ 85 / 1	15 / 17	0 / 230	/ 290 /	340 mn	1				

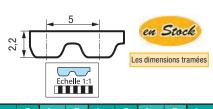

COURROIES SYNCHRONES



				lelle																						
		Lp:	mm Nombr	o do 4	donto								N	/1 X	(L	ī										
								_			_			AVA						_			_			
Code 256	Lp 65	Z 32	Code 504	Lp 128	Z 63	Code 688	Lp 175	Z 86	Code 856	Lp 217	Z 107	Code 1056	-1	132	Code 1280	Lp	7 160	Code 1728		Z 216	Code 3024	Lp	Z 378	Code 5248	Lp 1333	Z 656
288	73	36	512	130	64	696	177	87		219	107	1064		133	1296		162	1768					397	5568	1414	696
320	81	40	520	132	65	704	179	88	872	221	109	1072	-	134	1320		165	1800		225		813	400	5632	1431	704
344	87	43	528	134	66	712	181	89	880	224	110	1080		135	1360		170	1920		-	3392		424	6464	1642	808
360	91	45	536	136	67	720	183	90	888	226	111	1088		136	1400		175	2000		-	3456		432	6720	1707	840
376	96	47	544	138	68	728	185	91	896	228	112	1096		137	1416		177	2048			3584		448	6976	1772	872
384	98	48	560	142	70	736	187	92	904	230	113	1104	280	138	1440	366	180	2080	528	260	3624	920	453	7296	1853	912
392	100	49	568	144	71	744	189	93	912	232	114	1112	282	139	1472	374	184	2208	561	276	3704	941	463	7552	1918	944
400	102	50	576	146	72	752	191	94	920	234	115	1120	284	140	1480	376	185	2240	569	280	3712	943	464	8096	2056	1012
408	104	51	584	148	73	760	193	95	928	236	116	1136	289	142	1488	378	186	2280	579	285	3776	959	472	9096	2310	1137
416	106	52	600	152	75	768	195	96	944	240	118	1144	291	143	1496	380	187	2320	589	290	3984	1012	498	9600	2438	1200
424	108	53	608	154	76	776	197	97	952	242	119	1152	293	144	1504	382	188	2400	610	300	4032	1024	504	11200	2845	1400
432	110	54	616	156	77	784	199	98	960	244	120	1160		145	1520	386	190	2480			4176	1061	522	12800	3251	1600
440	112	55	624	158	78	792	201	99	976	248	122	1168		146	1536		192	2544			4352		544		3836	
448	114	56	632	161	79	800	203	100		250	123	1184		148	1552		194	2576		322	4368		546	20736		2592
456	116	57	640	163	80	808	205	101	1000	254	125	1192	$\overline{}$	149	1560	$\overline{}$	195	2656			4544		568			3200
464	118	58	648	165	81	816	207	102	1008		126	1200		150	1568		196	2776		-	4560				6893	
472	120	59	656	167	82	824	209	103	1016		127	1208	$\overline{}$	151	1576	$\overline{}$	197		711	350	4608	-	576	Larg	eur stan ,048 / 4,8	dard :
480	122	60	664	169	83	832	211	104	1024	260	128	1224	311	153	1600	406	200	2880	732	360	4664	1185	583		5 / 7,94	
				andi	No.		Туре	,		Pas	(mm)			Туре)		Pas	s (mm)		Lai	geur e	n 1/1	00 de	Pouce	(0,254n	nm)
					M	(LE	Mini e	xtra Lé	gère	2,	,03	HE		L	ourde		1	2,70	Ш	1/100	" mm	1/1	100"	mm	1/100"	mm
				offi	Х	LE	Extr	a Légè	ere	5,	,08	XH E	E	Extr	a lourd	le	2	2,23	11	012	3,04	8 0	37	9,52	150	38,1
	100			11.		. E	L	.égère		9,	53	XXH	E D	ouble	extra lo	ourde	3	1,75]	019	4,82	2 0	50	12,70	200	50,8
94			7			Dé	sia	natio	on	Co	ode	Tv	ре	La	arge	ur	1		Ш	025	6,35	-	_	19,05	300	76,2
		4			'		oigi	TCTEI	911			256 M	•		95		J			031	7,94	1 1	00	25,4	400	101,6
Shin.					_																				500	127
	0	(L	E												X	L	Е									
					┰				1						T											



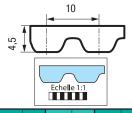
500	127	40	44	112	22	96	244	48	132	335	66	168	427	84	204	518	102	250	635	125	312	792	156	384	975	192	510	1295	255
575	146	46	54	137	27	98	249	49	134	340	67	170	432	85	206	523	103	252	640	126	314	798	157	390	991	195	560	1422	280
875	222	70	60	152	30	100	254	50	136	345	68	172	437	86	208	528	104	256	650	128	316	803	158	392	996	196	564	1433	282
900	229	72	64	163	32	102	259	51	138	351	69	174	442	87	210	533	105	260	660	130	320	813	160	396	1006	198	592	1504	296
1000	254	80	68	173	34	104	264	52	140	356	70	176	447	88	212	538	106	264	671	132	322	818	161	400	1016	200	612	1554	306
1125	286	90	70	178	35	106	269	53	142	361	71	178	452	89	214	544	107	266	676	133	330	838	165	412	1046	206	630	1600	315
1337	340	107	72	183	36	108	274	54	144	366	72	180	457	90	216	549	108	270	686	135	336	853	168	414	1052	207	670	1702	335
1400	356	112	74	188	37	110	279	55	146	371	73	182	462	91	218	554	109	274	696	137	340	864	170	420	1067	210	700	1778	350
1500	381	120	76	193	38	112	284	56	148	376	74	184	467	92	220	559	110	276	701	138	344	874	172	424	1077	212	710	1803	355
1600	406	128	78	198	39	114	290	57	150	381	75	186	472	93	224	569	112	280	711	140	348	884	174	430	1092	215	828	2103	414
1800	457	144	80	203	40	116	295	58	152	386	76	188	478	94	226	574	113	282	716	141	350	889	175	432	1097	216	900	2286	450
1950	495	156	82	208	41	118	300	59	154	391	77	190	483	95	228	579	114	286	726	143	352	894	176	434	1102	217	1300	3302	650
2037	518	163	84	213	42	120	305	60	156	396	78	192	488	96	230	584	115	290	737	145	360	914	180	438	1113	219	1494	3795	747
2275	578	182	86	218	43	122	310	61	158	401	79	194	493	97	234	594	117	296	752	148	362	919	181	450	1143	225			
2400	610	192	88	224	44	124	315	62	160	406	80	196	498	98	236	599	118	300	762	150	364	925	182	460	1168	230		.argeur andard	
5787	1470	463	90	229	45	126	320	63	162	411	81	198	503	99	240	610	120	304	772	152	370	940	185	470	1194	235		35 / 7 ,9	
	rgeur standa		92	234	46	128	325	64	164	417	82	200	508	100	244	620	122	306	777	153	372	945	186	480	1219	240		52 / 12,	•
)48 / 4,82 / 6 7,94 / 9,52mr	•	94	239	47	130	330	65	166	422	83	202	513	101	248	630	124	310	787	155	380	965	190	490	1245	245	1:	9,05mn	


T2,5 E

Désignation T25 ou T5 ou T10 ou T20 Lp E Largeur

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
103	41	150	60	178	71	230	92	285	114	330	132	390	156	470	188	563	225
120	48	160	64	188	75	245	98	300	120	335	134	410	164	480	192		
145	58	165	66	200	80	265	106	318	127	380	152	420	168	500	200		

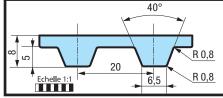
T5 E



standard : 3 / 6 9 / 15 mm

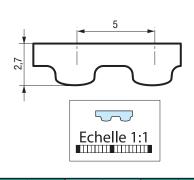
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z								
100	20	220	44	275	55	350	70	450	90	545	109	625	125	720	144	815	163	1000	200	1200	240	1760	352	2280	456
115	23	225	45	280	56	355	71	455	91	550	110	630	126	725	145	840	168	1020	204	1215	243	1800	360	3060	612
130	26	235	47	295	59	365	73	460	92	560	112	635	127	740	148	850	170	1030	206	1260	252	1875	375	3255	651
150	30	240	48	300	60	375	75	475	95	570	114	650	130	750	150	860	172	1045	209	1270	254	1900	380	3290	658
165	33	245	49	305	61	390	78	480	96	575	115	665	133	770	154	885	177	1050	210	1300	260	1940	388	3540	708
185	37	250	50	310	62	395	79	500	100	590	118	670	134	775	155	900	180	1060	212	1380	276	1960	392	3750	750
190	38	255	51	320	64	400	80	505	101	600	120	685	137	780	156	910	182	1075	215	1390	278	2120	424	4075	815
200	40	260	52	325	65	410	82	510	102	605	121	690	138	800	160	940	188	1100	220	1415	283	2160	432		geur
210	42	265	53	330	66	420	84	525	105	610	122	700	140	805	161	990	198	1120	224	1520	304	2220	444		dard : 10
215	43	270	54	340	68	425	85	540	108	620	124	710	142	810	162	995	199	1140	228	1630	326	2260	452		20 mm

T10 E



		ш							L	ongueu	r stan	dard : 1	5 / 20	/ 25 / 3	30 / 40) / 50 n	nm
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z								
260	26	500	50	660	66	840	84	980	98	1180	118	1370	137	1520	152	1800	180

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
260	26	500	50	660	66	840	84	980	98	1180	118	1370	137	1520	152	1800	180	2160	216	2540	254	3100	310	4780	478
320	32	530	53	690	69	850	85	1000	100	1200	120	1390	139	1560	156	1860	186	2200	220	2550	255	3230	323	5060	506
340	34	540	54	700	70	880	88	1010	101	1210	121	1400	140	1600	160	1880	188	2250	225	2580	258	3300	330	5360	536
370	37	550	55	720	72	890	89	1040	104	1240	124	1410	141	1610	161	1950	195	2270	227	2590	259	3340	334	5670	567
400	40	560	56	730	73	900	90	1050	105	1250	125	1420	142	1640	164	1960	196	2300	230	2610	261	3500	350	6000	600
410	41	580	58	750	75	910	91	1080	108	1260	126	1440	144	1690	169	1980	198	2340	234	2650	265	3600	360	6290	629
440	44	600	60	770	77	920	92	1100	110	1280	128	1450	145	1700	170	2020	202	2380	238	2800	280	3870	387	7000	700
450	45	610	61	780	78	950	95	1110	111	1300	130	1460	146	1720	172	2080	208	2430	243	2880	288	4040	404	7050	705
460	46	630	63	800	80	960	96	1140	114	1320	132	1480	148	1750	175	2090	209	2480	248	3000	300	4280	428	7600	760
480	48	650	65	810	81	970	97	1150	115	1350	135	1500	150	1780	178	2100	210	2500	250	3040	304	4680	468		


T20 E

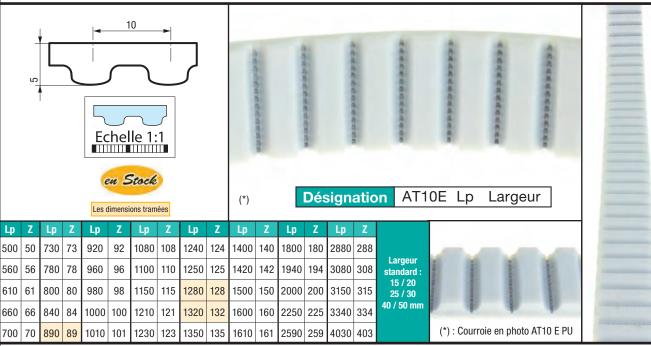
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
1080	54	1260	63	1680	84	1880	94	2600	130	3100	155	7600	380
1180	59	1280	64	1700	85	2040	102	2720	136	3620	181	Larg	
1220	61	1320	66	1760	88	2200	110	2740	137	4760	238	stand 30 /	
1240	62	1460	73	1780	89	2240	112	2760	138	5000	250	75 / 10	

AT5 E

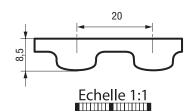
Courroie AT5 revêtue PU Néoprene

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
225	45	300	60	390	78	500	100	610	122	690	138	780	156	1050	210
255	51	340	68	420	84	545	109	630	126	710	142	825	165	1125	225
280	56	375	75	455	91	600	120	660	132	750	150	975	195	1520	304

Largeur	
standard	
6/8	
10 / 12	
16 / 20	
25 mm	


Туре	PAS	Largeur en mm 6 8 10 12 20 25 15 20 25 30 40 50 30 50 75 100 2 2									
AT5-E	5	6	8	10	12	20	25				
AT10-E	10	15	20	25	30	40	50				
АТ20-Е	20	30	50	75	100	-	-				

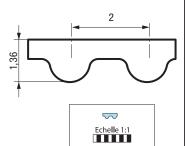
Désignation AT5E Lp Largeur



Les dimensions tramées

AT10 E

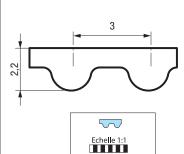
AT20 E



Désignation AT20E Lp Largeur

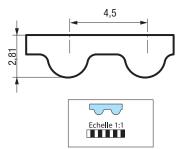
Lp	Z	Lp	Z	Lp	Z	Lp	Z	Largeur										
1000	50	1100	55	1280	64	1460	73	1780	89	1900	95	2600	130	3100	155	5660	283	standard : 30 / 50
1080	54	1240	62	1320	66	1700	85	1880	94	2360	118	2760	138	3620	181	7600	380	75 / 100 mm

S2M E



Désignation S 2 ou 3 ou 45 ou 5M E Ex: 60SME9

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z								
60	30	128	64	140	70	168	84	204	102	250	125	310	155	494	247	1066	533
96	48	130	65	146	73	178	89	210	105	264	132	328	164	530	265	1224	612
110	55	132	66	150	75	184	92	224	112	266	133	364	182	560	280		
112	56	134	67	160	80	190	95	234	117	274	137	426	213	710	355	stand	lard :
120	60	138	69	162	81	192	96	236	118	280	140	448	224	984	492	3/6/	9 mm

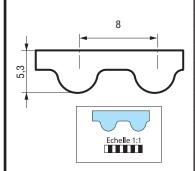

S3M E

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
120	40	192	64	237	79	294	98	351	117	432	144	573	191	681	227	1005	335
144	48	201	67	240	80	297	99	354	118	447	149	585	195	690	230	1050	350
150	50	204	68	246	82	300	100	357	119	453	151	597	199	699	233	1125	375
156	52	207	69	249	83	312	104	360	120	459	153	600	200	714	238	1260	420
162	54	210	70	252	84	318	106	363	121	468	156	606	202	720	240	1596	532
165	55	213	71	255	85	321	107	369	123	486	162	621	207	765	255	1800	600
171	57	219	73	264	88	327	109	378	126	501	167	633	211	789	263	4395	1465
174	58	222	74	267	89	330	110	384	128	504	168	636	212	804	268	4698	1566
177	59	225	75	276	92	333	111	405	135	507	169	651	217	810	270	6510	2170
186	62	231	77	288	96	339	113	408	136	537	179	657	219	894	298		geur dard :
189	63	234	78	291	97	345	115	420	140	564	188	660	220	900	300		iaru : 15 mm

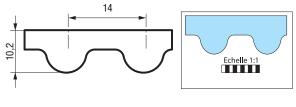
S4,5M E

S5M E

↓	5
3,41	
,	Echelle 1:1


Z	Lp	Z	Lp	Z	Lp	Z	Lp
617 137	617	97	437	70	315	36	162
30 140	630	98	441	73	329	40	180
375 150	675	100	450	75	338	44	198
711 158	711	104	468	76	342	45	203
178	801	109	491	77	347	50	225
31 229	1031	112	504	78	351	53	239
		115	518	80	360	56	252
Largeur tandard :		124	558	82	369	61	275
9 / 15	9	125	563	86	387	62	279
20 / 25 30 mm		126	567	88	396	63	284
30 11111	- 30	136	612	92	414	66	297

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
150	30	360	72	560	112	780	156	1270	254
200	40	375	75	575	115	800	160	1350	270
255	51	390	78	600	120	810	162	1420	284
260	52	400	80	625	125	825	165	1800	360
270	54	410	82	650	130	830	166	2000	400
285	57	425	85	665	133	850	170	4000	800
295	59	475	95	670	134	900	180		
320	64	490	98	675	135	950	190	Larç stanc	jeur lard :
325	65	500	100	700	140	1000	200	9/	
345	69	520	104	750	150	1050	210	20 / 30	25 mm
350	70	525	105	765	153	1125	225	30	


Désignation Lp S8/14M E S8W E

Ex: 1760S8ME20

Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
376	47	632	79	864	108	1040	130	1192	149	1320	165	1648	206	2240	280	3720	465
384	48	640	80	872	109	1056	132	1200	150	1344	168	1672	209	2304	288	4000	500
392	49	656	82	880	110	1064	133	1208	151	1352	169	1680	210	2400	300	4680	585
440	55	680	85	896	112	1096	137	1216	152	1360	170	1696	212	2432	304	6640	830
480	60	712	89	920	115	1104	138	1224	153	1384	173	1728	216	2496	312		
496	62	720	90	944	118	1120	140	1240	155	1400	175	1760	220	2536	317		
512	64	728	91	960	120	1128	141	1248	156	1432	179	1800	225	2560	320	Large standa	
520	65	760	95	976	122	1136	142	1264	158	1440	180	1912	239	2600	325	20	
528	66	800	100	984	123	1152	144	1280	160	1512	189	2000	250	2800	350	25	
560	70	824	103	992	124	1160	145	1296	162	1528	191	2024	253	2880	360	50 85 m	
584	73	840	105	1000	125	1168	146	1304	163	1544	193	2032	254	3200	400		
600	75	848	106	1032	129	1184	148	1312	164	1600	200	2120	265	3600	450		

S14M E

	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z
	714	51	1400	100	1890	135	2310	165	2814	201	4410	315
	966	69	1540	110	1904	136	2380	170	3136	224	4508	322
	1008	72	1610	115	1960	140	2450	175	3150	225	5012	358
	1036	74	1652	118	2002	143	2506	179	3500	250		
	1120	80	1750	125	2100	150	2590	185	3556	254	Largeur st 40 / 55	
	1190	85	1764	126	2198	157	2660	190	3850	275	115 /17	
- 1	1246	89	1806	129	2240	160	2800	200	4004	286		

COURROIES OUVERTES

POUR APPLICATIONS LINÉAIRES

AT10

Notamment pour le positionnement de haute précision sur des machines outils, des robots, des systèmes d'alimentation automatique..., sur des portes automatiques. Elles se font soit en denture classique soit en denture HTD. Ces courroies "LL" sont fabriquées en continu et en **ligne droite**, ce qui apporte un avantage considérable par rapport aux courroies découpées à partir d'un manchon, donc en spirale, avec coupure des câbles.

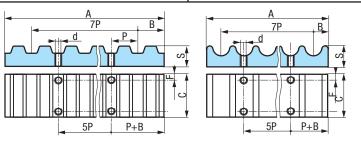
Ce procédé permet en outre - pour les cas où une haute précision est requise - de fabriquer des courroies avec câbles d'acier, celles stockées étant avec câbles en fibre de verre ou en fibre de carbone. Températures admises: -35° à +80°.

Les dimensions tramées

		largeur	16	25	32	40		largeur	025	037	050	075	100		largeur	6	10	15	20	25	40
travail	T5	Ouverte	128	200	256		XL	0	200	299	400	598	800	5M	0	245	408	612	816	1020	1632
av	10	Soudée	96	150	192	240	λL	S	145	217	290	434	580	IVIC	S	170	284	426	568	710	1136
		largeur	16	25	32	50		0	400	598	800	1197	1600	8M	0	449	524	598	673	1870	673
de	T10	0	1082	1690	2163	3380	L	S	300	449	600	898	1200	OIVI	S	288	336	384	432	1200	432
	110	S	800	1250	1600	2500	- 11	0	490	733	980	1466	1960	14M	0	823	960	1098	1235	3430	1235
9	ATE	0	186	290	371		П	S	368	550	735	1100	1470	14101	S	470	549	627	706	1960	706
Tension	AT5	S	134	134	134	134															
e	AT40	0	371	580	742	1160		0	Ouvert		Roulea	u stan	dard 3	0m.							

PLAQUES DE FIXATION POUR COURROIES OUVERTES

Type de courroie	L	F	d	В	A	S	C
XL	025	6	5,5	3,5	42,5	8	25,5
Λ.	037		0,0	0,0	12,0		28,5
	050						39
L	075	8	9	5	76,6	15	45
	100						51,5
	050						45
Н	075	10	11	9	106,9	22	51
	100						57,5
	20						45
OM	30	0	_	_	00	4.5	55
M8	50	8	9	5	66	15	75
	85						110
	40						71
	55						86
14M	85	10	11	9	116	22	116
	115						146
	170						201
	10						29
T5/AT5	16	6	5,5	3,2	41,8	8	35
	25		ĺ .	,	,		44
	16						41
T10/4T10	25			_			50
T10/AT10	32	8	9	5	80	15	57
	50						75


Attention la plaque peut bloquer le passage de la courroie dans les poulies puisqu'elles sont plus larges que la courroie.

Son utilisation est donc recommandée essentiellement dans des mouvements de va et vient.

Tenir compte de la position de la plaque afin d'éviter le blocage.

Matériel Aluminium. Livré sans vis.

COURROIES SYNCHRONES T10 RPP5 RPP8 RPP14 XLΧН STD5 STD8 **KEVLAR** T10 AT5 AT10 AT20 HTD3 HTD5 HTD8 HTD14 T5 T20

COURROIES DOUBLE DENTURE MOUVEOU Denture caoutchouc double face Cordage polyester de traction Tissu de protection XL Code ISO DXLE Code Largeur Désignation Pas: 5,08 Ex: 196DXLE025 IS₀ Nb de IS₀ Nb de IS₀ Nb de ISO Nb de IS0 Nb de Lp Lp Lp Lp Largeur (mm) 7,9 9.5 12.7 19.1 Lo dents code code dents dents dents 1168.40 196 98 497,84 236 118 599.44 300 150 762,00 364 182 924,56 460 230 Code 025 031 037 050 075 198 502,92 240 609.60 470 235 1193.80 99 120 304 152 772.16 370 185 939.80 244 200 100 508,00 122 619,76 306 153 777,24 372 186 944,88 480 240 1219,20 629,92 787,40 1244,60 202 101 513.08 248 124 310 155 380 190 965.20 490 245 204 102 518,16 250 125 635,00 312 156 792,48 384 192 975,36 510 255 1295,40 523,24 640,08 280 206 103 252 126 314 157 797.56 390 195 990.60 560 1422.40 52 208 104 528,32 256 128 650,24 316 158 802,64 392 196 995,68 564 282 1432.56 533,40 660,40 812,80 1503,68 210 105 260 130 320 396 198 1005,84 592 296 212 538.48 132 670.56 322 817.88 200 1016.00 612 1554.48 106 264 161 400 306 1,35 214 206 1046,48 315 543,56 266 675,64 330 838,20 412 1600,20 107 133 165 630 216 108 548,64 270 135 685,80 336 168 853,44 414 207 1051,56 670 335 1701,80 218 109 553.72 274 137 695,96 340 170 863.60 420 210 1066,80 700 350 1778.00 220 558,80 701,04 344 873,76 424 710 355 1803,40 110 276 138 172 212 1076.96 568,96 1092,20 280 711,20 348 174 883,92 430 215 828 414 224 112 140 2103,12 Echelle 1·1 Lenene III 226 113 574,04 282 141 716,28 350 175 889,00 432 216 1097,28 900 450 2286,00 228 114 579,12 286 143 726,44 352 176 894,08 434 217 1102,36 1300 650 3302,00 1494 230 115 584,20 290 145 736,60 360 180 914.40 438 219 1112,52 747 3794,76 234 117 594,36 296 148 751,84 362 181 919,48 450 225 1143,00 Code ISO DLE Code Largeur D Désignation Pas: 9,53 Ex: 203DLE050 Code Nb de Ln Lp Lp Lp Lp Largeur (mm) 12,7 19.1 25.4 38.1 50.8 ISO ISO dents ISO ISO **ISO** dents dents 203 54 514,35 281 75 714,38 394 105 1000,13 540 144 1371,60 769 205 1952,63 Code 050 075 100 150 200 206 55 523,88 285 76 723.90 398 106 1009.65 548 1390.65 780 208 1981,20 146 210 56 533,40 300 80 762,00 405 108 1028,70 551 147 1400,18 817 218 2076,45 214 57 542.93 304 81 771,53 409 109 1038,23 555 148 1409.70 863 230 2190.75 218 800,10 413 1047,75 1447,80 2238,38 58 552.45 315 84 110 570 152 881 235 221 59 561,98 319 85 809,63 420 112 1066,80 574 153 1457,33 900 240 2286,00 225 60 571,50 323 86 819,15 428 114 1085,85 581 155 1476,38 915 244 2324,10 229 581,03 838,20 1095,38 1485,90 2371,73 330 88 431 115 585 934 249 233 62 590,55 334 89 847,73 435 116 1104,90 600 160 1524,00 994 265 2524,13 1,90 236 600,08 857,25 1114,43 274 2609,85 63 338 90 439 117 619 1571.63 1028 165 240 64 609,60 341 91 866,78 443 118 1123,95 630 168 1600,20 1043 278 2647,95 1143,00 1609,73 1148 2914,65 3,2 244 65 619.13 345 92 876,30 450 120 634 169 306 248 66 628.65 353 94 895.35 454 121 1152.53 641 171 1628.78 1193 318 3028.95 123 1171,58 251 67 638,18 360 96 914,40 461 660 176 1676,40 1406 375 3571.88 255 68 647,70 368 98 933,45 465 124 1181,10 694 185 1762,13 1418 378 3600,45 259 69 657,23 371 99 942,98 480 128 1219,20 697 186 1771,65 1675 447 4257,68 263 70 666,75 375 100 952,50 495 132 1257,30 720 192 1828,80 Echelle 1:1 270 72 685,80 383 102 971,55 499 133 1266,83 728 194 1847,85 274 73 695.33 386 103 981,08 510 136 1295,40 731 195 1857.38 278 74 704,85 390 104 990,60 525 140 1333,50 765 204 1943,10

COURROIES DOUBLE DENTURE MOUVEOU

Désignation

Code ISO DHE Largeur Ex: 1000DHE075

Code ISO	Nb de dents	l In	Code ISO	Nb de dents	l n	Code ISO	Nb de dents	l n	Code ISO	Nb de dents	l In		Nb de dents	l In	Largeur (mm)	19,1	25,4	38,1	50,8	76,2
625	125	1587,50	740	148	1879,60	870	174	2209,80	1140	228	2895,60	1450	290	3683,00	Code	075	100	150	200	300
630	126	1600,20	750	150	1905,00	880	176	2235,20	1150	230	2921,00	1500	300	3810,00						
640	128	1625,60	760	152	1930,40	900	180	2286,00	1160	232	2946,40	1510	302	3835,40						
650	130	1651,00	770	154	1955,80	920	184	2336,80	1175	235	2984,50	1535	307	3898,90						
660	132	1676,40	780	156	1981,20	950	190	2413,00	1180	236	2997,20	1550	310	3937,00						
670	134	1701,80	790	158	2006,60	960	192	2438,40	1200	240	3048,00	1560	312	3962,40	<mark>- 1</mark> 2	2,70	-			
675	135	1714,50	800	160	2032,00	980	196	2489,20	1250	250	3175,00	1600	320	4064,00			\vdash		\neg	o ₋
680	136	1727,20	810	162	2057,40	985	197	2501,90	1260	252	3200,40	1630	326	4140,20	⁶	_	_	_	\Box	2,30
690	138	1752,60	820	164	2082,80	1000	200	2540,00	1270	254	3225,80	1660	332	4216,40	ر اینا ل	\neg		\neg	لے	
700	140	1778,00	830	166	2108,20	1020	204	2590,80	1300	260	3302,00	1700	340	4318,00	4,40	_		_		
710	142	1803,40	840	168	2133,60	1050	210	2667,00	1325	265	3365,50				4,40	-	Echelle			1
720	144	1828,80	845	169	2146,30	1100	220	2794,00	1350	270	3429,00									
725	145	1841,50	850	170	2159,00	1120	224	2844,80	1400	280	3556,00	Z = N	iombre	de dents						
730	146	1854,20	860	172	2184,40	1130	226	2870,20	1440	288	3657,60									

DXHE

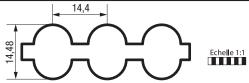
Désignation

Code ISO DXHE Code Largeur Ex: 1000DHE200

IS0	Z	Lp	IS0	Z	Lp	IS0	Z	Lp	IS0	Z	Lp	IS0	Z	Lp	Largeur (mm)	50,8	76,2	101,6	127
700	80	1778,00	770	88	1955,80	840	96	2133,60	1120	128	2844,80	1575	180	4000,50	Code	200	300	400	500
735	84	1866,90	780	89	1978,03	870	99	2200,28	1260	144	3200,40	1750	200	4445,00					
752	86	1911,35	800	91	2022,48	980	112	2489,20	1400	160	3556,00								
761	87	1933,58	820	94	2089,15	1000	114	2533,65	1540	176	3911,60	Z = N	ombre	de dents					

DXXHE

ISO	Z	Lp	IS0	Z		Lp	ISO	Z		Lp
700	56	1778	1000	80		2540	1600	128	8	4064
800	64	2032	1200	96		3048	1800	14	4	4572
900	72	2286	1400	112	2	3556	Z = N	ombr	e de	e dents
L	argeur (ı	mm)	50,	8		76,2	101,	6		127
	Code		20	0		300	400			500



D 8M E

14M E

87 | 696 | 107 | 856 | 127 | 1016 | 156 | 1248 | 178 | 1424 | 216 | 1728 | 267 | 2136 | 400 | 3200

Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp	Z	Lp
70	560	89	712	108	864	130	1040	157	1256	180	1440	220	1760	276	2208	410	3280	76	1064	101	1414	125	1750	160	2240	275	3850
71	568	90	720	109	872	132	1056	158	1264	182	1456	223	1784	280	2240	425	3400	78	1092	103	1442	126	1764	165	2310	309	4326
72	576	91	728	110	880	135	1080	159	1272	185	1480	224	1792	288	2304	500	4000	80	1120	104	1456	127	1778	175	2450	324	4536
73	584	92	736	112	896	138	1104	160	1280	189	1512	225	1800	291	2328	525	4200	85	1190	105	1470	129	1806	185	2590	227	3178
75	600	95	760	115	920	140	1120	163	1304	190	1520	232	1856	300	2400	550	4400	89	1246	106	1484	130	1820	200	2800	Z = N	ombre
76	608	97	776	116	928	141	1128	164	1312	192	1536	237	1896	313	2504	Z = Nc	ombre	90	1260	108	1512	135	1890	222	3108	de d	ents
78	624	98	784	118	944	142	1136	166	1328	194	1552	238	1904	325	2600	de d	ents	92	1288	110	1540	138	1932	225	3150	Larg.	(mm)
79	632	99	792	119	952	144	1152	168	1344	197	1576	242	1936	342	2736	Largeu	r (mm)	94	1316	112	1568	140	1960	236	3304	40	55
80	640	100	800	120	960	146	1168	169	1352	200	1600	250	2000	350	2800	2	0	96	1344	115	1610	143	2002	240	3360	85	115
82	656	102	816	121	968	148	1184	170	1360	206	1648	260	2080	381	3048	2	5	100	1400	118	1652	150	2100	250	3500	175	-
85	680	103	824	122	976	150	1200	174	1392	210	1680	262	2096	390	3120	5	0										
86	688	105	840	125	1000	152	1216	175	1400	212	1696	263	2104	396	3168	8	5										

POULIES À MOYEU AMOVIBLE - VTP®

SÉRIES "TURBO-VENTILÉE" 1 x 45°

 α

b

2

3,5

4,75

mm

8

10

12,5

17

12

15

19

25,5

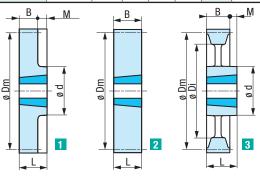
lp

8,5 9

11 11 2,75

14 14

19 19


38 34

38

TRÈS ÉCONOMIQUES À L'EMPLOI

Avantages

- **Réduction de poids** pouvant aller jusqu'à 50%, d'où diminution des tensions internes dans la poulie et moment d'inertie plus faible (possibilité d'utiliser des roulements de plus petites dimensions)
- Economies d'énergie
- Coûts logistiques réduits
- Fonte spéciale GGG 60 (ou 80) permettant des vitesses jusqu'à 100 m/s et une résistance accrue à l'usure. Pour des vitesses élevées, il est nécessaire d'équilibrer la poulie avec le moyeu (en option et sur commande)
- Température de fonctionnement réduite de 10 à 17°C, d'où une plus grande durée de vie des courroies ou utilisation de celle-ci à des températures ambiantes plus élevées
- Résistance importante au choc, diminuant les risques au montage et pendant le transport
- Nouveau traitement de surface breveté ACC® assurant la protection de l'environnement et résistant à la rouille, aux huiles, aux pétroles et aux lubrifiants en général
- Les propriétés physiques du film de traitement sont exceptionnelles.

Dm

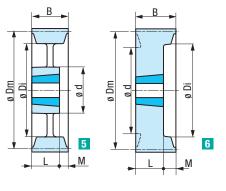
mm

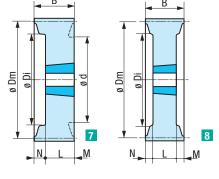
≤ 80

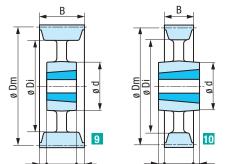
> 80

≤ 118

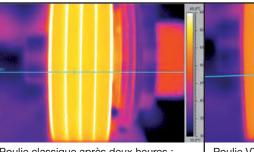
> 118 ≤ 190


> 190


SP_Z


SPA

SPB

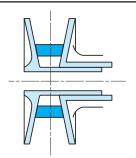

SPC

Poulie classique après deux heures : température de la courroie ± 60°C

			Large	eur B	
Cou	rroies	SPZ	SPA	SPB	SPC
	1	16	20	25	
	2	28	35	44	
	3	40	50	63	85,0
SS	4	52	65	82	110,5
Gorges	5	64	80	101	136,0
60	6	76	95	120	161,5
	7				
	8	100		158	212,5
	10			100	

Poulie VTP après deux heures :

température de la courroie ± 48°C



COURROIES DE VARIATEURS

a gorge de la poulie est.

Quand la gorge de la poulie est étroite, la courroie à vitesse variable tourne près du sommet de la gorge. Le diamètre primitif augmente.

Quand la même gorge s'élargit, la courroie tourne dans le bas de celleci. Le diamètre primitif diminue.

POUR VARIATEURS DE VITESSE

extra-larges : à grande rigidité transversale extra-minces : à grande souplesse longitudinale crantées : à faible arc d'enroulement.

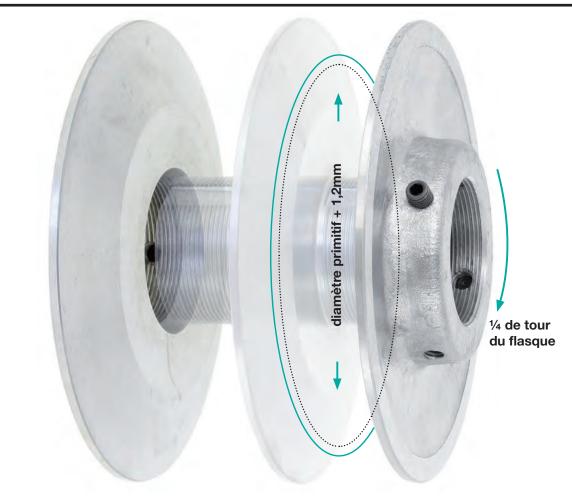
Les courroies de variateur présentent les caractéristiques suivantes :

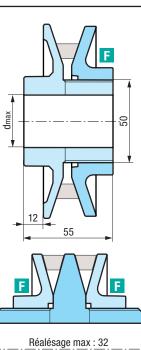
Souplesse accrue - Le profil des crans et l'espacement de ceux-ci assurent à la courroie une souplesse accrue. Ceci a pour résultat d'abaisser les températures en service et d'accroître éventuellement la gamme de vitesse. Ces crans ne servent pas à l'entraînement.

Rigidité transversale - L'augmentation de la rigidité transversale permet à la courroie de résister à la torsion, lorsqu'elle tourne entre les parois des gorges de poulie. La charge est régulièrement répartie ce qui assure à la courroie une vie plus longue.

Fonctionnement doux - Une nouvelle tolérance réduite de l'épaisseur de l'armature rigide et résistante à renforcement transversal, entraîne une amélioration générale des propriétés dont dépend un fonctionnement doux et régulier.

Longue durée de vie de la courroie - Ces courroies sont depuis longtemps préférées à cause de leur longue durée. À cela s'ajoutent maintenant une souplesse accrue, une plus grande rigidité transversale et, pour les courroies de plus faible section, les crans moulés, ayant pour résultat de réduire la fissuration et d'assurer ainsi à cette nouvelle courroie, une vie exceptionnellement prolongée.


La réunion de toutes ces caractéristiques vous garantit le meilleur rendement possible de vos transmissions à vitesse variable.


> Désignation L Ep I E Ex: 136500E

Le diametre primitir	augi	IIICIII																						
Réf.						W16		W20			W25				W31,5			W40				W50		
Largeur au sommet	L	mm	13		17	17	21	21	22	23	26	28	30	32	33	37	41	42	47	47	51	52	55	70
Epaisseur	Ep	mm	5	6	5	6	6	7	8	10	8	8	10	10	10	10	13	13	13	18	22	16	16	18
Angle des flancs	α	•												289	0									
			468	475	536	476	530	530	485	813	525	525	700	790	750	800	925	925	900	3150	2072	1180	1400	1445
			476	500	776	536	600	600	525	833	630	700	750	850	790	850	970	970	950			1250	1500	1500
						536	770	610	550	865	655	750	775	900	820	900	1000	1000	1000			1325	1700	1600
						570	870	675	575		672	800	800	950	850	950	1040	1040	1060			1400	1800	1800
L						606	970	770	600		680	850	850	1000	900	1000	1060	1060	1120			1525		2800
4	→					630		870	610		710	900	875	1073	950	1060	1120	1120	1180			1600		
	7	. 1				650		890	650		762	950	900	1200	1000	1120	1190	1180	1250			1725		
l \	/ ц	-				776		900	675		800	1000	950	1250	1073	1180		1250	1320			1800		
						853		970	700		850	1060	1000	1553	1120	1250		1340	1400			1925		
						876		1090	750		862	1120	1035		1180	1320		1440	1500			2425		
						976			800		900	1180	1073		1200	1400		1540	1600					
$\setminus \alpha$									850		962	1250	1120		1250	1500		1600	1700					
									900		1000	1320			1353	1600		_						
\ /									950		1082	1400			1553	1700			2000					
V									1000		1212	1500	1600		1750	1800		2180	2240					
									1060		1362	1600			1953	2000			2500					
									1120		1562					2240								
en Stoc	k								1180			1800												
									1250			2000												
Les dimensions tra	amác	20							1320			2240												
Les dimensions tre	annoc								1400															
									1500															
I			l						1800															

ÉPARGNEZ-VOUS LES ATTENTES FASTIDIEUSES AU TÉLÉPHONE ! UTILISEZ AU MAXIMUM LA TÉLÉCOPIE ET l'e-MAIL...
AU SURPLUS, LES RÉPONSES QUI VOUS SERONT FAITES SERONT MIEUX ETUDIÉES ET PLUS PRÉCISES.

POULIES VARIABLES À L'ARRÊT

Ces poulies en aluminium permettent par un réglage fin de faire varier leur diamètre supportant la courroie.

1/4 de tour du flasque mobile permet de faire varier le diamètre primitif de 1,2mm.

Elles acceptent un alésage allant jusqu'à 32mm.

Le flasque F se déplace en le vissant ou le dévissant sur le moyeu fileté.

C'est un moyen de réglage utilisé lors de la mise en route d'une installation, réglage qui n'est que très rarement modifié par la suite.

Alle de		er avul	Occurrate	Diam	Dulm	P	uissar	ice tra	nsmiss	ible (c	ontact	de la co	ourroie	sur 180	°)
ир ае	gorges	ø ext.	Courroie	Diam	Prim			orge		Poids		2 Go			Poids
1	2	mm		Mini	Maxi	1450	t/mn	2888	3 t/mn	kg	1450	t/mn	2888	t/mn	kg
			SPZ/XPZ	67	64	1,45	2,16	2,58	3,83		2,9	4,32	5,16	7,78	
			SPA/XPA	69	92	1,97	3,68	3,31	6,48		3,94	7,36	6,62	12,96	
VA11	VA21	106	Z	63	84	0,35	0,59	0,59	1,01	0,6	0,7	1,18	1,18	2,02	1,1
			Α	65	92	1,14	2,37	1,73	3,9		2,28	4,74	3,46	7,8	
			В	68	102	0,94	3,42	1,15	5,4		1,88	6,84	2,3	10,8	
			SPZ/XPZ	76	90	1,7	2,4	3,05	4,34		3,4	4,8	6,1	8,68	
			SPA/XPA	75	98	2,42	4,12	4,15	7,28		4,84	8,24	8,3	14,56	
VA12	VA22	118	Z	69	90	0,42	0,65	0,71	1,12	0,7	0,84	1,3	1,42	2,24	1,3
			Α	71	98	1,41	2,63	2,22	4,36		2,82	5,26	4,44	8,74	
			В	74	108	1,38	3,85	1,9	6,13		2,76	7,7	3,8	12,26	
			SPZ/XPZ	86	103	2,24	2,93	4,04	5,31		4,48	5,86	8,08	10,62	
			SPA/XPA	88	111	3,38	5,07	5,93	8,98		6,76	10,14	11,86	17,96	
VA13	VA23	131	Z	82	103	0,56	0,79	0,97	1,37	0,8	1,12	1,58	1,94	2,74	1,5
			Α	84	111	2,01	3,21	3,27	5,33		4,02	6,42	6,54	10,66	
			В	87	121	2,32	4,77	3,51	7,67		4,64	9,54	7,02	15,34	
			SPZ/XPZ	96	113	2,65	3,34	4,79	6,03		5,3	6,68	9,58	12,06	
			SPA/XPA	98	121	4,12	5,79	9,28	10,26		8,24	11,58	14,56	20,52	
VA14	VA24	143	Z	92	113	0,67	0,89	1,16	1,55	0,9	1,34	1,78	2,32	3,1	1,7
			Α	94	121	2,46	3,63	4,05	6,04		4,92	7,26	8,1	12,08	
			В	97	131	3,05	5,47	4,77	8,81		6,1	10,94	9,54	17,62	
	VA15 VA25		SPZ/XPZ	111	127	3,86	4,33	6,94	7,76		6,52	7,88	11,78	14,08	
			SPA/XPA	113	135	6,29	7,56	11,14	13,33		10,42	13,72	18,48	24,26	
VA15		156	Z	107	127	0,98	1,14	1,71	1,99	1,1	1,66	2,08	3,08	3,62	1,9
			Α	109	135	3,76	4,69	6,25	7,7		6,24	8,54	12,34	14,12	
			В	112	145	5,2	6,71	8,36	10,75		6,5	10,8	9,38	15,4	

PRUD'HOMME TRANSMISSIONS - F 93203 SAINT-DENIS CEDEX - TEL. 01 48 11 46 00 - FAX. 01 48 34 49 49 - www.prudhomme-trans.com - info@prudhomme-trans.com sous réserve de toute modification de construction ou d'erreur typographique données techniques et prix modifiables sans preavis

Après avoir choisi le type de variateur (poulie motrice et entrainée), en fonction de la gamme de vitesse souhaitée, et de la puissance à transmettre, il y a lieu de calculer l'entraxe pour vérifier qu'il est compatible avec la valeur souhaitée et pour connaître la longueur de la courroie à utiliser :

Ε

- a) Choisir un entraxe souhaité
- b) Calculer la longueur primitive de la courroie :
 Lp = 2A + 1,57 (DpM min + DpE max) + (DpM min DpE max)²

(DpM min = diam. Primitif min de la poulie motrice) (DpE max = diam. Primitif max de la poulie entrainée) c) Choisir une courroie de longueur normalisée (voir page 470 du catalogue général)
 En cas de choix d'une courroie Gates déterminée par sa longueur intérieure Li, transformer Lp en Li par la formule
 Li = Lp - 4,71 h (h étant la hauteur de la courroie)

Е

d) Recalculer alors l'entraxe réel par A = 0,5 [Lp - 1,57 (DpM min + DpE max) - (<u>DpM min - DpE max</u>)²] Lp

						P	OULIES	STANDA	RD PE	F-M ou F	PEF-E							
POULIE PEF (M-E)	Courroie	d+R H7	d max	ØD	ØD1	ØD2	ØD3	U	C	dp min	dp max	e min	e max	L2	L3 min	L3 max	Poids PEF-E	Poids PEF-M
90	13x6	11-14	20	90	90	50	-	28,8	8	40	87	42	52	72	83	93	1	1,8
110	17x5	14-19	20	110	90	58	64	19,7	8	38,5	107,5	47	61	72	99	113	1,5	2
120	17x5	14-19	20	120	90	58	64	44,4	8	41,5	117,5	44	60	96	101	117	1,8	2,2
130	22x8	14-19	22	130	105	85	89	32,5	8	48	126,1	38	56	72	107	125	2	3
160	28x8	19-24	25	160	105	85	89	33,9	8	50	156	45	69	85	115	139	3	3,8
185	37x10	24-28	30	185	125	85	91	44	8	62	180	57	87	110	134	165	4,2	5,5
200	37x10	24-28	30	200	125	85	91	44,3	8	62	190	57	87	110	134	165	4,9	6,1
225	47x13	28	30	225	125	129	133	56,2	8	66,5	218,5	65	104	135	141	180	7	7,8
270	47x13	28	42	270	160	129	133	57,7	12	80	263,5	84	124	145	174	213	11,5	14
300	55x15	38	42	300	160	165	175	73,4	12	84,5	292,5	92	139	180	181	228	15,5	16,5
330	65x20	38-42	42	330	160	165	175	79,2	12	92	320	99	154	180	188	243	21	22
360	70x20	42-48	50	360	160	185	195	65,3	12	105	350	138	199	220	223	284	26	24,8

PEFM = avec volant

PEFE = sans volant

					POULIE	S AUTO	ALIGN	EUSES	PEFAA-N	/I ou PEF	AA-E						
Poulie PEFAA-M PEFAA-E	Courroie	d+R H7	d max	ØD	ØD2	ØD3	ØC	Dp min	Dp max	a	b	s	L1 min	L1 max	L	Poids PEFAA-E	Poids PEFAA-M
80	17x5	14	14	95	50	44	55	41	92,5	13,5	28,5	2	44	55,5	50	0,9	0,9
100	22x8	14-19	20	120	58	48	68	52	116	20,5	36,5	2,5	63,5	78	72	1	1
150	28x8	19-24	25	160	85	58	80	59	156	25	50	4	71	93	90	2,5	2,5
190	28x8	19-24	25	190	85	65	80	59	186	24,5	51,5	4	71	94,5	90	2,5	2,5
196	33x10	24-28	30	200	85	75	90	69	195	31,5	59,5	4,5	86	112,5	110	5	5
210	37x10	24-28	42	220	101	75	90	77	215	34,5	67,5	5	97	127,5	122	6	6
250	47x12	28-38	42	255	101	105	115	92	249	42,5	81,5	5	110,5	145	150	11	11
280	55x15	38-42	42	300	129	100	125	98,5	292,5	42	99,5	7	122	166,5	162	14	14
325	70x20	42-48	48	350	129	120	140	120	340	49,5	119	7,5	150,5	199,5	195	17,5	17,5

ROUES LIBRES NON AUTOCENTRÉES

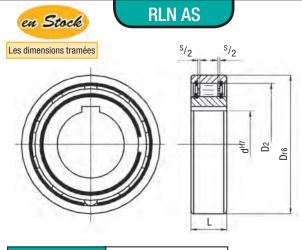
Une roue libre est un système mécanique permettant d'interrompre momentanément l'entraînement en rotation d'un organe entraîné tout en l'autorisant néanmoins à continuer de tourner librement.

Les roues libres assurent trois types de fonctions

- 1. Avance intermittente : le mouvement alternatif de l'arbre d'entrainement est transformé en un mouvement unidirectionnel intermittent; seule la rotation de l'arbre dans le «bon sens» est transmise à la bague extérieure; ce mode est utilisé, par exemple, sur les rouleaux d'encrage d'imprimerie ou des systèmes d'indexation ou une roue de bicyclette.
- 2. Anti Retour : dans ce cas la roue libre interdit la rotation à contre sens de l'arbre d'entraînement, solidaire de la bague interne; cette fonction est classiquement utilisée pour des systèmes d'élévateurs (vis d'Archimède, tapis, bandes transporteuses, grues, pompes ...)
- 3. Limiteur de vitesse : la bague extérieure peut tourner plus vite que la bague intérieure ou continuer à tourner si l'intérieur est arrêté; une application classique est celle d'un moteur de démarrage qui est ainsi "débrayé" dès que la vitesse souhaitée est atteinte.

Les parties internes et externes doivent être parfaitement centrées l'une par rapport à l'autre.

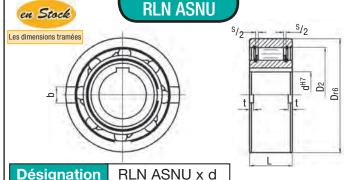
Ces roues libres nécessitent l'adjonction de roulements à billes de dimensions similaires afin d'assurer le guidage en rotation.


UNE ROUE LIBRE N'ACCEPTE PAS DE CHARGE AXIALE

Entretien

Le graissage à l'huile est en général suffisant. Dans certains cas, à faible vitesse, une lubrification à vie (graisse) peut être envisagée.

Lors d'un montage ou démontage à la presse, veiller à appuyer simultanément sur les bagues extérieures et intérieures sous peine d'endommager le dispositif.


Applications: Machines agricoles et alimentaires - Emballage Textile - Enroulage - Convoyeurs - Grues - Systèmes de ventilation Machines outils - Pompes - Compresseurs - Systèmes d'enroulement de câbles ou de bandes.

Désignation	RLN AS x d

ı	dH7	Dr6	L	d2	s	d1	b	t	Co	uple	Vit. Maxi	- Bague	Poids
ı	um	ы		uz	•	uı	, D	1	Normal	Résiduel	Interne	Externe	ruius
Ī				mm					N	lm	miı	1 -1	Kg
ı	8	37	20	30	1	20	6	3	20	0,09	5000	6000	0,1
ı	9	37	20	30	1	20	6	3	20	0,09	5000	6000	0,1
ı	12	37	20	30	1	20	6	3	20	0,11	5000	6000	0,1
ı	15	47	30	37	1	26	7	3,5	78	0,15	4500	5500	0,3
ı	20	62	36	52	1	37	8	3,5	188	0,18	3000	3600	0,6
ı	25	80	40	68	2	40	9	4	250	0,36	2200	2600	1,1
I	30	90	48	75	2	45	12	5	500	0,4	1800	2100	1,6
I	35	100	53	80	2	50	13	6	680	0,6	1600	2000	2,3
ı	40	110	63	90	2	55	15	7	1115	0,84	1300	1700	3,1
I	45	120	63	95	2	60	16	7	1500	0,94	1100	1500	3,7
I	50	130	80	110	2	70	17	8,5	2375	1,28	850	1300	5,4
4	55	140	80	115	2	75	18	9	2500	1,5	800	1200	6,1
I	60	150	95	125	2	80	18	9	4250	1,6	700	1100	8,5
ı	70	170	110	140	3	95	20	9	5875	3,6	550	900	13
ı	80	190	125	160	3	110	20	9	10000	3,6	620	800	18
I	90	215	140	180	3	120	24	11,5	17350	6,8	500	700	25,3
I	100	260	150	210	4	140	28	14,5	19750	8,8	400	600	42,1
I	130	300	180	240	4	160	32	17,5	35000	12,5	300	500	65
ı	150	320	180	260	4	205	32	17	44400	13,5	250	400	95

		,										J						,			
dH7	Dr6	L	D ₂	s	Coo Normal	uple Résiduel		- Bague Externe	Poids	dh7	dn6	L	s	D2	b	t	Co Normal	uple Résiduel	Vit. Maxi Interne	- Bague Externe	Poids
			r6		N	m	mi	n -1	kg				mm				N	m	mir	n -1	kg
8	24	8	19	1	3,8	0,003	4350	6600	0,03	8	35	13	1	27	4	1,3	12	0,016	3300	5000	0,1
10	30	9	25	1	6,8	0,004	3550	5200	0,04	12	35	13	1	27	4	1,3	12	0,016	3300	5000	0,1
12	32	10	26	1	13	0,005	3200	4850	0,05	15	42	18	1	36		1,3	30	0,02	2500	3600	0,1
15	35	11	30	1	14	0,007	2900	4300	0,1	17	47	19	1	36		2	50	0,02	2300	3400	
17	40	12	34	1	28	0,01	2600	3700	0,11	20	52	21	1	44		2,5	78	0,02	2200	3100	0,2
20	47	14	40	1	40	0,02	2200	3300	0,12	25	62	24	1	52		2	125	0,05	1700	2200	0,4
25	52	15	45	1	56	0,03	2000	2900	0,15	30	72	27	1	60	10		255	0,14	1400	2200	0,6
30	62	16	55	1	90	0,08	1600	2500	0,25	35	80	31	1	70		3,5	383	0,16	1200	1900	0,7
35	72	17	62	1	150	0,09	1350	2000	0,33	40	90	33	1	78		3,5	545	0,4	1100	1700	0,9
40	80	18	70	1	185	0,1	1200	1900	0,42	45		36	2	85		3,5	788	0,45	1000	1600	1,2
45	85	19	74	1	218	0,11	1100	1650	0,46	50		40	2	92		4,5	1013	0,5	900	1300	1,7
50	90	20	80	1	230	0,13	900	1450	0,5	60	130	<u>46</u>	2	110		5,5	1835	1,1	700	1100	2,8
55	100	21	90	1	313	0,14	800	1300	0,65	70		51	2	125		6,5	2312	1,5	600	1000	4
60	110	22	98	1	513	0,26	700	1100	0,8	80	170	58	2	140	20	7,5	3300	1,8	500	800	5,8

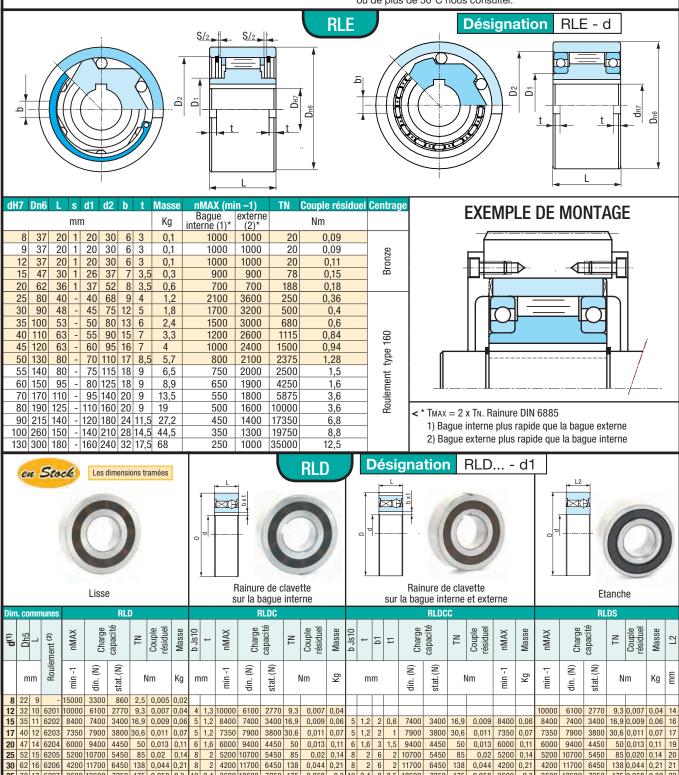
ROUES LIBRES AUTOCENTRÉES RLE & R

Ces roues libres économiques sont autocentrées.

Pour les tailles 8 à 20 ce centrage se fait acier sur acier.

Pour les tailles supérieures il est assuré par la présence de deux roulements de type 160.

Les roues libres de la série RLD sont le résultat de la combinaison d'un roulement à billes (en général de type 6200) avec des roues libres à cames. Autocentrées et lubrifiées par de la graisse elles sont munies de protections contre la poussière.


La fonction de roue libre est assurée par des cames maintenues par une cage servant également au positionnement des billes qui leur sont jux-

Pour la transmission du couple, la roue libre doit être emmanchée "dur" tant sur l'arbre que dans le logement extérieur. Le montage et le démontage doivent s'effectuer avec les mêmes précautions que pour un roulement à billes.

pour l'arbre et H7 Les tolérances recommandées sont h6 ou j6 ou J6 pour le roulement extérieur. Tmax = 2x TN

- RLD : Mouvement transmis grâce à l'ajustement de l'arbre sur la bague intérieure de la roue libre et celui du logement accueillant la bague extérieure.
- RLDC : Mouvement transmis grâce à l'ajustement (k6) de l'arbre sur la bague intérieure de la roue libre et d'une clavette. La bague intérieure est insérée dans un logement.
- RLDCC : Rainure de clavette à l'intérieur comme à l'extérieur; les tolérances à respecter sont h6 pour l'arbre et H6 pour le logement de la roue libre
- RLDS : elles n'ont pas de rainure de clavette et se montent en lieu et place de roulements 6200 2RS

En cas d'utilisation à des températures ambiantes de moins de -5°C ou de plus de 50°C nous consulter.

3600 | 12600 | 7250 | 175 | 0,058 | 0,3 | 10 | 2,4 | 3600 | 12600 | 7250 | 175 | 0,058 | 0,3 | 10 | 2,4 | 8 | 2,5 | 12600

3000 | 15540 | 12250 | 325 | 0,07 | 0,5 | 12 | 3,3 | 3000 | 15540 | 12250 | 325 | 0,07 | 0,5 | 12 | 3,3 | 10

(1) -0,01 pour les modèles RLD et RLDS H7 pour les autres - (2) roulement ZZ - la version RLDS a un encombrement différent. L = Largeur

2 11700 6450

3 15540

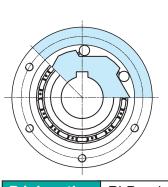
175 0,058 3600 0,3

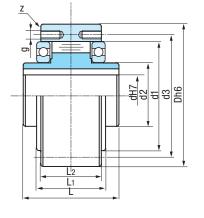
0.07 3000 3600 12600 7250

15540 12250

175 0,058 0,30 22

ROUES LIBRES AUTOCENTRÉES RLP


Ces roues libres économiques sont autocentrées. Ce centrage est assuré par la présence de deux roulements de type 160.


Elles sont munies d'une rainure de clavette sur la bague intérieure et de quatre encoches sur la bague extérieure

Elles doivent être lubrifiées avant toute utilisation (une lubrification à l'huile est indispensable pour des vitesses d'utilisation élevées)

Elles sont constituées (modèles RLP22, RLP42, RLP52, RLP77) d'une roue libre RLP sur laquelle s'adaptent différents types de flasques.



Désignation	RIPxd
Designation	

RLP	dH7	Dh6	L	Lt	L2	d1	d2	d3	z	g	nMAX ((Bague)	TN	Couple résiduel	Masse
Modèle				m	m						(min –1) 1)	(min -1) 2)	N	m	Va.
Modele				1111	m						Interne	Externe	IN	m	Kg
12	12	62	42	27	20	42	20	51	3	ø5,5	4000	5600	55	0,11	0,5
15	15	68	52	32	28	47	25	56	3	M5	3700	5300	125	0,15	0,8
20	20	75	57	39	34	55	30	64	4	M5	2700	4600	181	0,18	1
25	25	90	60	40	35	68	40	78	4	M6	2200	3600	288	0,36	1,5
30	30	100	68	48	43	75	45	87	6	M6	1800	3300	500	0,4	2,2
35	35	110	74	51	45	80	50	96	6	M6	1500	3000	735	0,6	3
40	40	125	86	59	53	90	55	108	6	M8	1200	2600	1040	0,84	4,6
45	45	130	86	59	53	95	60	112	8	M8	1000	2400	1125	0,94	4,7
50	50	150	94	72	64	110	70	132	8	M8	850	2200	2125	1,28	7,2
55	55	160	104	72	66	115	75	138	8	M10	750	2000	2625	1,5	8,6
60	60	170	114	89	78	125	80	150	10	M10	650	1900	3500	1,6	10,5
70	70	190	134	108	95	140	90	168	10	M10	550	1700	5750	3,6	13,5
80	80	210	144	108	100	160	105	185	10	M10	500	1600	8500	3,6	18,2
90	90	230	158	125	115	180	120	206	10	M12	450	1500	14500	6,8	28,5
100	100	270	182	131	120	210	140	240	10	M16	350	1250	20000	8,8	42,5
120	120	310	202	152	140	240	160	278	12	M16	300	1100	25000	12	56
130	130	310	212	168	152	240	160	278	12	M16	250	1000	31250	12,5	65
150	150	400	246	194	180	310	200	360	12	M20	200	800	70000	13,5	138

DIFFÉRENTS FLASQUES ADAPTABLES

	Exemple de mont	tage
Désignation	RLP22 x d	

								en.	-cock		LUS UIIII	CHOIDH	o tranicos									
RLP42	L4	L5	S	s1	d4	d5	D6 h7	0	Masse)áai	an	otior	DI D/	10 v d	RLP22	L3	S	d4	d5	0	Mass
Modèle					m	uo	DOIN		Kg	H	Jesi	gn	auoi	RLP4	12 X U	Modèle			mm			Kg
12	44	3	10	10	85	72	42	5,5	0,9		L5	5 🕇	S .	L ₂	s 1	12	64	10	85	72	5,5	0,9
15	54	3	11	11	92	78	47	5,5	1,3		_		1	-	1	15	78	11	92	78	5,5	1,3
20	59	3	10,5	10,5	98	85	55	5,5	1,7] 7	١					20	82	10,5	98	85	5,5	1,7
25	62	3	11,5	10,5	118	104	68	6,6	2,6		1		廿			25	85	11,5	108	104	6,6	2,6
30	70	3	11,5	11,5	128	114	75	6,6	3,5]1	╗┈	30	95	11,5	128	114	6,6	3,5
35	76	3,5	13,5	13	140	124	80	6,6	4,5		₹	· [<u></u>		П	35	102	13,5	140	124	6,6	4,5
40	88	3,5	15,5	15	160	142	90	9	6,9			C			7	40	115	15,5	160	142	9	6,9
45	88	3,5	15,5	15	165	146	95	9	7,1			IE				45	115	15,5	165	146	9	7,1
50	96	4	14	13	185	166	110	9	10,1		_					50	123	14	185	166	9	10,1
55	106	4	18	17	204	182	115	11	13,1	9	DGF.	₩				55	138	18	204	182	11	13,1
60	116	4	17	16	214	192	125	11	15,6			Ш			dH7 Dh6	60	147	17	214	192	11	15,6
70	136	4	18,5	17,5	234	212	140	11	20,4]		Ш				70	168	18,5	234	212	11	20,4
80	146		21	20	254	232	160	11	26,7]		Ш				80	178	21	254	232	11	26,7
90	160	4,5	20,5		278	254	180		39]		.				90	192	20,5	278	254	14	39
100	184		30	28	335	305	210		66	11	ΙÍ	T #			-⊪ ↓	100	217	30	335	305	17	66
120	203		30	27	375	345	240		91	1	<u></u>					120	239	30	375	345	17	91
130	214	5	29	27	375	345	240		91	ļ	, —		□ -			130	250	29	375	345	17	91
150	248	5	32	30	485	445	310	22	200	ı		_	<u>₹_Z</u>	L		150	286	32	485	445	22	200

ROUES LIBRES COMPACTES

Ces roues libres sont munies de roulements de type 160 qui permettent de centrer la bague intérieure par rapport à la bague externe. Les couples sont transmis à la bague interne par l'intermédiaire d'une clavette normalisée et de la bague externe à la partie entraînée par des vis

80

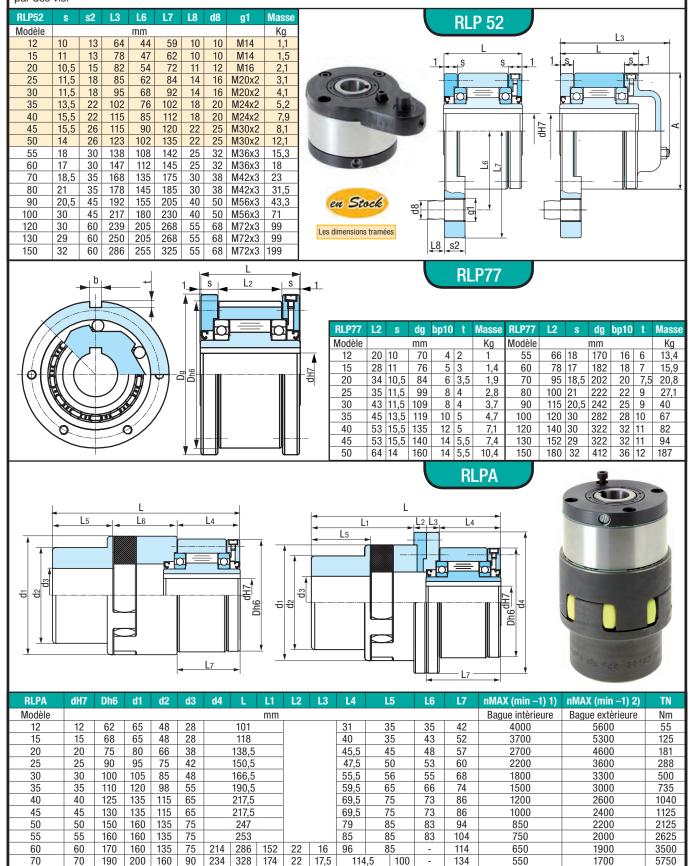
80

210

200 | 160

90 254 336 172

22


20

Elles peuvent être lubrifiées par de la graisse ou de l'huile.

Les roues RLP peuvent être complétées par différents types de flasques pour être transformées en RLP22, 42, 77, avec accouplement A ou en Antidévireur RLP 52

 $T_{MAX} = 2 \times T_{N}$. Rainure DIN 6885

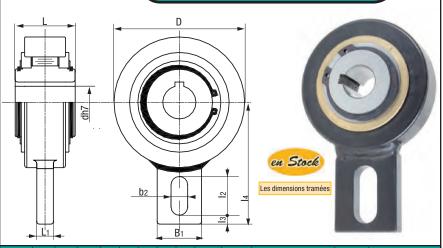
- *Le modèle GL12 a 3 trous ø5,5
- 1) Bague interne plus rapide que la bague externe.
- 2) Bague externe plus rapide que la bague interne.

100

144

500

1600


8500

ROUES LIBRES HAUTES PERFORMANCES

RLHP	dH7	Dh6	L	L1	L2	d1	d2	d3	Z	g	M	nMAX (min –1)	nMAX (min –1)	TN	Masse
Modèle				m	ım							Bague interne	Bague externe		Kg
25	25	90	60	40	35	68	40	78	4	M6	M4	8200	5600	210	1,5
30	30	100	68	48	43	75	45	87	6	M6	M4	7600	5400	570	2,2
40	40	125	86	59	53	90	55	108	6	M8	M4	6500	4500	1500	4,6
50	50	150	94	72	64	110	70	132	8	M8	M4	5100	3600	2400	7,2
55	55	160	104	72	66	115	75	138	8	M10	M4	4500	3200	2400	8,6
60	60	170	114	89	78	125	80	150	10	M10	M4	3900	2700	1900	10,5
2G 60	60	170	114	89	78	125	80	150	10	M10	M4	3900	2700	3230	10,6
70	70	170	114	89	78	125	80	150	10	M10	M4	3900	2700	1900	11,5
2G 70	70	170	114	89	78	125	80	150	10	M10	M4	3900	2700	3230	11,6
80	80	170	114	89	78	125	80	150	10	M10	M4	3900	2700	1900	10,9
2G 80	80	170	114	89	78	125	80	150	10	M10	M4	3900	2700	3230	11

ANTIDÉVIREURS ADV

ADV	dH7	D	L	B1	L1	b2	12	13	14	Masse	nMAX (min -1) 1)	TN	Couple résiduel
Modèle					mm					Kg	Bague interne	Nm	Nm
20	20	83	35	40	12	15	35	5	90	1,3	450	275	0,2
25	25	83	35	40	12	15	35	5	90	1,3	450	275	0,2
30	30	118	54	40	15	15	35	8	110	3,5	320	1250	1,2
35	35	118	54	40	15	15	35	8	110	3,4	320	1250	1,2
40	40	118	54	40	15	15	35	8	110	3,3	320	1250	1,2
45	45	155	54	80	15	18	35	10	140	5,8	300	2180	2,2
50	50	155	54	80	15	18	35	10	140	5,7	300	2180	2,2
55	55	155	54	80	15	18	35	10	140	5,6	300	2180	2,2
60	60	155	54	80	15	18	35	10	140	5,5	300	2180	2,2
70	70	155	54	80	15	18	35	10	140	5,3	300	2180	2,2
80	80	190	64	80	20	20	40	20	155	8,7	200	2930	3,5
90*	90	260	90	120	25	30	50	20	220	24,5	150	7250	3,5
100*	100	260	90	120	25	30	50	20	220	23,5	150	7250	3,5
110*	110	260	90	120	25	30	50	20	220	22,5	150	7250	3,5
120*	120	300	110	120	30	30	50	20	240	42	130	11100	6

* 2 rainures de clavette à 120°

CAGES BLRCA

BAGUES: NOUS CONSULTER

P<u>RUD'HOMM</u>E

transmissions

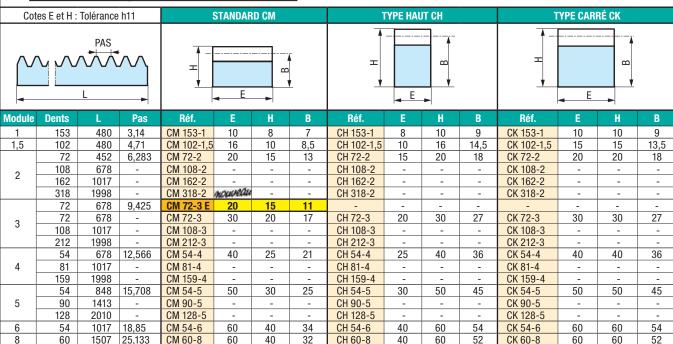
25 chemin d'Aubervilliers F-93203 SAINT-DENIS Cedex

Tél. 01 48 11 46 00 - Fax 01 48 34 49 49

www.prudhomme-trans.com info@prudhomme-trans.com

CRÉMAILLÈRES STANDARD ACIER

ACIER CARBONE - ANGLE DE PRESSION 20°


A chaque extrémité, la denture est arrêtée de manière à permettre le raccordement bout à bout de 2 crémaillères sans avoir à les retoucher.

Les dimensions tramées Sur demande longueurs jusqu'à 3m. disponibles

CM ou CH ou CK **Désignation**

Ex.: CM3182

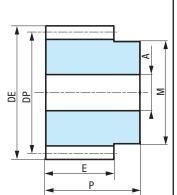
POUR LA COMMANDE ET LE MONTAGE DE CES CRÉMAILLÈRES

ENGRENAGES CYLINDRIQUES 18 DENTS EN ACIER

60

La largeur de leur denture correspond exactement à celle des crémaillères CM (Sauf CM-1,5) et CK.

1507

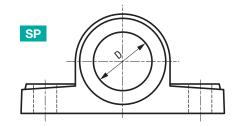

25.133

8

Cela n'empêche pas de les utiliser également pour les CH.

Bien entendu, les pignons cylindriques droits de notre série standard "D" conviennent également. (Voir page 147)

Module	Réf.	DP	DE	Α	Е	M	Р
1	EC 18-1	18	20	5	10	15	18
1,5	EC 18-1,5	27	30	8	15	22	25
2	EC 18-2	36	40	10	20	30	32
3	EC 18-3	54	60	15	30	43	45
4	EC 18-4	72	80	20	40	58	55
5	EC 18-5	90	100	25	50	75	70
6	EC 18-6	108	120	30	60	90	80
8	EC 18-8	144	160	35	60	110	80


EC

PALIERS SPÉCIAUX OU PLASTIQUES

60

60

Pour montage de l'arbre des pignons dans le cas de manœuvres peu fréquentes (Vannes, trappes...)

PALIERS FONTE - ALÉSAGE LISSE

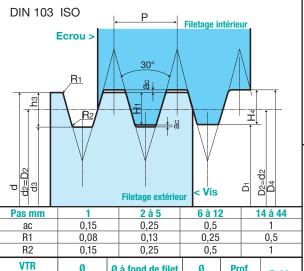
Diam.: 20-25-30-35-40-45-50-60mm Dim.: Voir page 112 du catalogue général

Désign	atio	n	CKZ	ZX F	Réf.	Ex.: CKZX722
Réf.	Е	Н	В	L	Dents	EN 11000 Z 2.CN.18.09 (304)
153-1	10	10	9	480	153	Sauf module 4 = 11101 Z6.CN.18.09
102-1,5	15	15	13,5	480	102	Saut module 4 = 111011 26.CN. 18.09
72-2	20	20	18	452	72	THE STATE OF THE S
108-2	-	-	-	678	108	The state of the s
162-2	-	-	-	1017	162	The same of the sa
72-3	30	30	27	678	72	Contract of the second
108-3	-	-	-	1017	108	
54-4	40	40	36	678	54	
81-4	l -	-	-	1017	81	Sur demande mais avec délai : Tous autres r

manner de la constitución de la sont stockées uniquement en section carrée du module 1 au module 4 Modules miniatures 0,2 à 0,5 : Voir page 139

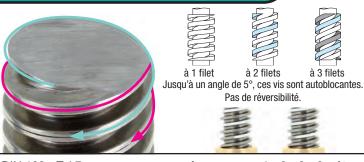
modules, sections, longueurs et nuances d'IIIOX

ENGRENAGES CYLINDRIQUES 18 DENTS MOX ECZX18


Correspondant aux crémaillères WW CKZX

Dimensions analogues au tableau EC (Acier - Voir ci-dessus) mais en **MOX** Z 2. CN 18. 10

L'ACIER INOX Z2.CN.18.10 CONVIENT PARFAITEMENT **POUR LES INDUSTRIES CHIMIQUES ET ALIMENTAIRES**


VIS TRAPÉZOÏDALES DE PRÉCISION

PROFIL AVEC VIDE À FOND DE FILET ET SANS JEU SUR LES FLANCS

	-,		,	-,-		
VTR Désignation vis	Ø sur flancs	Ø à fond Vis	de filet Ecrou	Ø ext.	Prof. profils	Poids
d x p	d2 = D2	d3	D1	D4	h3 = H4	kg/m
8x1,5	7,25	6,2	6,5	8,3	0,9	0,32
10x2	9	7,5	8	10,5	1,25	0,47
12x3	10,5	8,5	9	12,5	1,75	0,63
14x3	12,5	10,5	11	14,5	1,75	0,93
16x4	14	11,5	12	16,5	2,25	1,15
18x4	16	13,5	14	18,5	2,25	1,53
20x4	18	15,5	16	20,5	2,25	1,96
22x5	19,5	16,5	17	22,5	2,75	2,72
24x5	21,5	18,5	19	24,5	2,75	2,82
26x5	23,5	20,5	21	26,5	2,75	3,33
28x5	25,5	22,5	23	28,5	2,75	3,91
30x6	27	23	24	31	3,5	4,38
32x6	29	25	26	33	3,5	5,06
36x6	33	29	30	37	3,5	6,71
40x7	36,5	32	33	41	4	8
44x7	40,5	36	37	45	4	9,87
50x8	46	41	42	51	4,5	13
52x8	48	43	44	53	4,5	14,2
60x9	55,5	50	51	61	5	18,1
70x10	65	59	60	71	5,5	26
80x10	75	69	70	81	5,5	34,4
90x12	84	77	78	91	6,5	43
100x12	94	87	88	101	6,5	54
110x12			Nous co	nsulter		
120x14	113	104	108	122	8	51,4
130x14			Nous co			
140x14	132,5	124	126	142	8	108
150x16			Nous co	nsulter		

160x16

DIN 103 - Tol 7e

• PRÉCISION STANDARD :

VTR-R (VIS ROULÉES) 0,2 mm sur 300 mm de long

• PRÉCISION NORMALE :

VTR.PN (VIS USINÉES). 0,15 mm sur 300 mm de long Ø ext. tolérance h11 Rectitude: 0,8/1000mm

• HAUTE PRÉCISION :

VTR. HP (VIS USINÉES). 0,05 mm sur 300 mm de long Ø ext. tolérance h9 Rectitude: 0,3/1000mm

Longueurs: 1 - 2 - 3 - 6 mètres

Diamètres: 8 à 160 mm

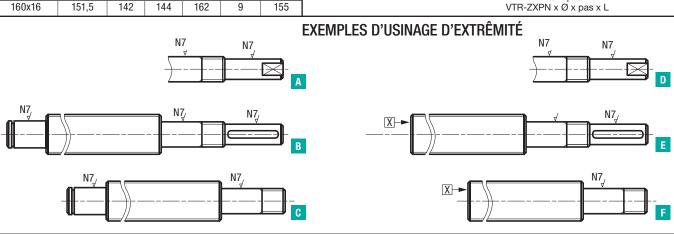
Matières: 9S Mn 28K - C45 -ETG - C15 (vis roulées)

1.4305

Filetage: à droite ou à gauche

tous pas - à 1, à 2

ou 3 filets sur devis



VIS STANDARD

A: acier - B: bronze - ZX: MOX - N: nylatron

VIS		C15			Acier	C.45		Z	X
VTR		R		P	N	Н	P	P	N
			Longu	ieurs = L	en mètre	es			
VTR	1	2	3	1	2	1	2	1	2
8 x 1,5				•		•		•	
10 x 2				•		•		•	
12 x 3	•			•		•		•	
16 x 4	•		•	∙Δ		•			•
18 x 4			•						
20 x 4	•	•	●Δ	●Δ	●Δ	•	•		•
24 x 5	•	•	•∆	∙Δ	●Δ	•	•		•
26 x 5			●Δ						
28 x 5			•					l.	D
30 x 6	•	•	•		●Δ	•	•		
32 x 6			•						\sim
36 x 6		•	•		•				
40 x 7		•	•		•			10,5	
50 x 8		•	●Δ		•) %	
60 x 9		•	•		•			_<	_ I II
70 x 10			•						
80 x 10								L	

Δ filetage à gauche à 1 seul filet. Δ à gauche : VTR-PNG x Ø x pas x L • filetage à droite à 1 seul filet : VTR-R x Ø x pas x L VTR-PN x Ø x pas x L VTR-HP x Ø x pas x L VTR-ZXPN x Ø x pas x L

ÉCROUS DE VIS TRAPÉZOÏDALES

Les dimensions tramées

ÉCROUS STANDARD

A: acier - B: bronze - ZX: WOX - N: nylatron

Pour Vis					É	crous						
Pour vis		Cyl. E	TR. C		Не	x : E1	rr. I	1	FI	as.:	ETR.	F
VTR	Α	В	ZX	N	Α	В	ZX	N	Α	В	ZX	Z
8 x 1,5	•	•	•	•	•					•		
10 x 2	•	•	•	•	•					•		
12 x 3	•	•	•	•	•					•		
16 x 4	•∆	•∆	•	•	•∆	•				•		
18 x 4										•		
20 x 4	∙∆	•∆	•	•	∙∆	•				•		
24 x 5	•Δ	•Δ	•		•∆					•		
26 x 5										•		
28 x 5										•		
30 x 6	•Δ				•Δ	•				•		
32 x 6										•		
36 x 6	•				•					•		
40 x 7	•				•	•				•		
50 x 8	•				•					•		
60 x 9	•				•					•		
70 x 10												
80 x 10												

ÉCROUS TRAPÉZOIDAUX

(Selon DIN 103 - Tol.7H)
- CYLINDRIQUES: ETRC
- HEXAGONAUX: ETRH
- FLASQUÉS: ETRF

Coefficients comparatifs de frottement : Nous consulter. Le bronze et le Nylatron peuvent travailler à sec.

PUISSANCES TRANSMISSIBLES: Nous consulter.

Désignation

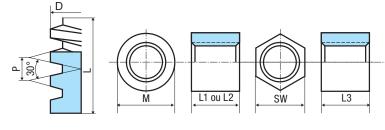
ETRC (ou H ou F) x Nuance x Ø x Pas

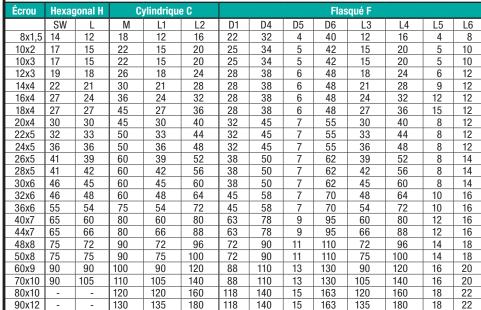
A gauche:

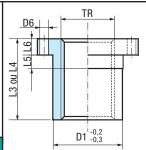
Acier C. 35

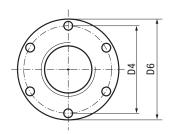
Bronze

Nylatron


INOX


: A : B


: ZX


: N

- ETRH G ... - ETRH F ...

PRUD'HOMME

5 chemin d'Aubervilliers - F-93203 SAINT-DENIS Cede: **Tél. 01 48 11 46 00 - Fax 01 48 34 49 49** www.prudhomme-trans.com info@prudhomme-trans.com

VIS D'ARCHIMÈDE MODULAIRES

nouveau

À FILETS CONTINUS

Les vis d'Archimède modulaires apportent de nombreuses innovations qui facilitent l'utilisation et améliorent l'efficacité des vis d'Archimède.

Elles sont constituées d'éléments modulaires enfichés sur des arbres hexagonaux standard.

Ceci rend le montage et le démontage extrêmement aisés. En cas de rupture seul l'élément endommagé doit alors être remplacé

- Extraordinaire résistance à la corrosion et à l'abrasion
- Disponibles en différentes matières et différents pas adaptées aux principales applications
- Peuvent être installées en lieu et place de vis monobloc
- Disponibles en pas à droite et à gauche
- · Niveau sonore faible
- Élasticité du matériau restreignant les bris de spires
- Jusqu'à 6 mètres sans palier intemédiaire.

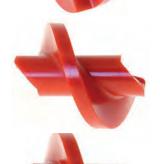
Applications

- Convoyage de produits pulvérulents
- Pompage de liquide

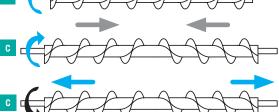
Secteurs d'application

- Agriculture
- Bâtiment : Béton, préparation de mortier
- Alimentaire : machine de dosage et conditionnement d'aliments
- · Gestion des déchets
- Processus utilisant des pulvérulents, industries chimiques, plastiques, caoutchoucs, fonderies
- Mines et carrières.

PAS CARRÉ


PAS PROGRESSIF

PAS RÉDUIT


Les schémas ci-contre montrent le sens de déplacement du produit en fonction du sens d'enroulement de la spire et du sens de rotation.

- D = Enroulement à droite
- G = Enroulement à gauche
- C = Vis composites à filets contrariés.

SENS DE ROTATION

ATTENTION:

RETOURNER UNE VIS NE CHANGE PAS SON SENS!

VIS D'ARCHIMÈDE MODULAIRES Ø extérieu Hauteur Section de Masse Taux remplissage Pas **Désignation** VAM Pas Matière Sens spire de l'âme fonctionnelle l'axe d'1 module 100% Débit par tour mm mm $\mathsf{m}\mathsf{m}$ mm mm Terminaison **VAMT 5050** 50 50 0,11 42 M Module carré (Ø = Pas) **VAMM 5050** 50 50 0,11 42 F Plaque de fin 50,8 24 13 VAMD 5025 25 25 0,05 30 en Stock D 1/2 pas AB Résistance à l'abrasion VAMF 5025 22,5 50 0,00 37 **AL** Alimentaire VAMT 8080 80 80 0,27 110 AT Atmosphères explosives **VAMM 8080** 80 80 0,27 110 **G** Gauche 76,2 30 17 **D** Droite VAMD 8040 40 40 0,13 85 **VAMF 8040** 25 80 0,00 100 VAMT 100100 100 0,69 230 100 VAMM 100100 100 100 0,69 232 101,6 39 22 VAMD 10050 50 50 0,35 177 **VAMF 10050** 25 100 0,00 182 VAMD 150 150 150 150 2,27 650 VAMT 150 150 150 2,27 650 150 150 57 32 VAMD 150 75 150 75 500 1,13 75 VAMF 150 75 0,00 40 600 **VAMM VAMT VAMD VAMF** Calcul de la longueur de la vis et du nombre de modu Débit d'un convoyeur en m³/h en fonction du taux de remplissage et de la vitesse de rotation d'une vis diamètre 150mm pas de 150mm 85% 12,00 70% 10,00 8,00 50% Débit en m³/h. 45% 6,00 30% 4,00 <u>15%</u> 2,00 0 Déterminez votre vis modulaire Ø 150 0 20 40 60 80 100 120 avec le formulaire en .pdf Vitesse de rotation en tr/min www.prudhomme-trans.com

GLISSIÈRES TÉLESCOPIQUES

Les données indiquées le sont pour une utilisation selon les règles de l'art et en particulier elles s'entendent pour des charges :

- Equilibrées
- Egalement réparties
- Sans porte à faux
- Montage sur chant sur un tiroir de 450mm de largeur
- (sauf GLCT); en cas d'utilisation horizontale à plat, la charge admissible est réduite à 25% de la charge nominale.
- · Les glissières étant fixées solidement en utilisant tous les trous de fixation.

Tous les modèles de glissières ne sont pas compatibles avec un montage à plat. Habituellement les glissières sont graissées à vie et peuvent être utilisées de -20°C à 110°C.

Pour toute autre utilisation n'hésitez pas à contacter notre bureau technique qui vous renseignera.

Ces glissières ne sont pas adaptées au déplacement ou au support d'opérateurs.

Gamme standard

		Capaci	té (kg))	Cours	se (mr	n) TR
Réf Pht	En stock	Double/ triple	de	à	Course	de	à
GLT2601	*	d	30	12	100%	147,5	554
GLT204	*	d	65	30	75%	201,5	506
GLT3732	*	d	40	40	100%	292	660
GLT301	*	t	70	40	100%	327	734
GLT2132		d	50	35	75%	163	526
GLT3832	*	t	50	50	100%	140	711
GLT3301	*	t	68	55	100%	330	737
GLT3307	*	t	68	55	100%	330	737
GLT3308	*	t	68	55	100%	330	737
GLT5321	*	t	170	70	100%	323,5	1123,5
GLTZX5321	*	t	140	100	100%	323,5	803,5
GLTAL5321		t	50	40	100%	323,5	803,5
GLT3607		t	120	83	100%	305	711
GLT5417		t	100	90	100%	340	733
GLT7957	*	t	140	160	100%	304	914
GLT9301		t	227	154	100%	254	1524
GLT9308		t	227	154	100%	304,8	1524
GLTZX2028		d	242	65	75%	209	506
GLTZX330		d	50	35	100%	304,5	698
GLTAL4120		d	438	185	75%	290	853
GLTAL4140		t	400	400	100%	402	1540
GLTAL4160		t	240	300	100%	300	1000
GLCT115		Chariot	60	60	-	226	937

Glissières spéciales

Consultez-nous pour tous besoins spécifiques.

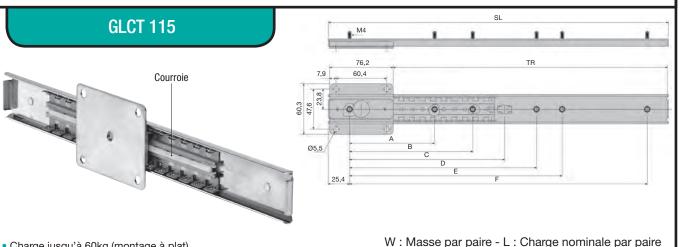
De nombreuses options sont disponibles en usine ou sur fabrication spéciale.

- Verrouillage ouvert ou fermé avec ou sans levier de verrouillage
- Fermeture automatique
- Ouverture par pression sur le tiroir
- Ouverture automatique avec vérin à gaz intégré
- Amortissement de fermeture
- Différents types de revêtements
- Fixation par baïonnettes pour l'utilisation dans des meubles métalliques.

GUIDAGE LINÉAIRE GLA - 115 PLAN DE PERÇAGE 100-200 100-200 50-75 nouveau 10 12.3 • Guidage linéaire à chariot à recirculation de billes (III) ou plastique : Le chariot à billes plastiques ne nécessite pas de lubrifiant)

· Charge jusqu'à 30kg par chariot

- Résistant à la corrosion
- Utiliser des vis à tête fraisée de 4mm
- Fixer le ou les rails de guidage sur une surface rigide et plane
- Possibilité de rabouter les rails afin d'obtenir un guidage de grande longueur
- · La précision de positionnement dépend du système de translation utilisé. Le jeu éventuel dans le chariot n'a pas d'impact sur la précision résultante
- Durée de vie 50.000 m à pleine charge, 500.000 à 15% de la charge nominale.
- GLA115-120ZX : 100X 304


		Capacité de charge en kg.								
		Su	r <mark>cha</mark>	mp	Hor	izont	ale	Suspendu		
	Nombre de chariots	1	2	3	1	2	3	1	2	3
CGLA 115 P	Chariot billes plastiques	30	54	72	18	32	42	24	42	54
CGLA 115 ZX	Chariot billes MOX	50	90	120	30	55	70	40	70	90
BGLA 115	Butée pour GLA115 + 2 Vis									_
GLA 115 120	Rail aluminium 1,20m.		II L							2 J
GLA 115 240	Rail aluminium 2,40m.					Ţ	_		Ĭ	
GLA 115 120 ZX	Rail 1100X 1,20m.		_ , ∧			~			~	

111

M5 x 0,8(x2)

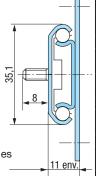
GLISSIÈRES À CHARIOT MOBILE

en Stock

Charge jusqu'à 60kg (montage à plat)

Charge jusqu'à 50kg (montage sur chant)

10.000 cycles


Guidage linéaire précis sur toute sa

 Curseur mobile en prise permanente sur le train de billes

Glissières vendues individuellement

• Peut être utilisée en position verticale pour servir de guidage sans support de charge

L'adjonction d'une courroie permet la synchronisation des éléments mobiles de la glissière.

				kg						
									L	L
SL	TR	A	В	C	D	E	F	W	Montage Horizontal	Montage Vertical
305	226	88,9	-	127,0	165,1	-	254,0	0,56	60	50
356	276	101,6	-	152,4	203,2	-	304,8	0,62	60	50
406	327	101,6	-	177,8	254	-	355,6	0,68	60	50
457	378	127,0	-	203,2	279,4	-	406,4	0,74	60	50
508	429	152,4	-	228,6	304,8	-	457,2	0,80	60	50
559	480	177,8	-	254,0	330,2	-	508,0	0,94	60	50
610	530	101,6	203,2	279,4	355,6	457,2	558,8	1,00	60	50
660	581	127,0	254,0	304,8	355,6	482,6	609,6	1,08	60	50
711	632	127,0	254,0	330,2	406,4	533,4	660,4	1,12	60	50
813	734	152,4	304,8	381,0	457,2	609,6	762,0	1,18	60	50
914	835	177,8	355,6	431,8	508,0	685,8	863,6	1,32	60	50
1016	937	203,2	406,4	482,6	558,8	762,0	965,2	1,44	60	50

VÉRINS À VIS TRAPÉZOÏDALES COMPACTS

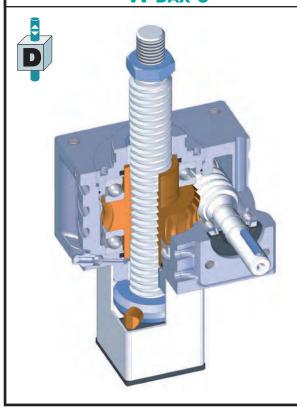
Les vérins à vis trapézoïdale compacts VV-DAX-C VV-TEM-C

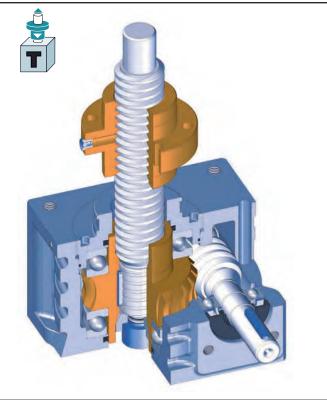
Vérin à vis à déplacement axial compact

Vérin à vis tournante et écrou mobile compact

remplacent les séries E & H, qui restent cependant disponibles pour des réparations ou des remises en état de machines. Pour toute nouvelle conception cette nouvelle gamme est à privilégier. Elle peut être fabriquée avec des vis à billes en remplacement des vis trapézoïdales.

UNE LARGE GAMME D'ACCESSOIRES




DE NOMBREUX ACCESSOIRES EN STOCK OU FABRIQUÉS

pour répondre au mieux à vos besoins spécifiques contribuent à la grande polyvalence de cette nouvelle gamme de vérins à vis.

A VIS A DÉPLACEMENT AXIAL VV-DAX-C

A VIS TOURNANTE ET ÉCROU MOBILE VV-TEM-C

VÉRINS À VIS : PRÉSENTATION DE LA GAMME

Type	Standard	C		2	5	10	25	50	100
Poussée maximale			kN	2	5	10	25	50	100
			Kg	200	500	1000	2500	5000	1000
Vis trapézoïdale				14x4	18x4	20x4	30x6	40x7	60x9
Vis trapézoïdale version renforcée VVDAX seulement				18x4	24x4	24x5	40x7	50x8	-
Moteur	1 400 t/mn(*)	N	kW	0,13	0,34	0,72	1,73	3,75	8,82
Electrique		L	kW	0,06	0,12	0,23	0,57	1,17	2,95
DÉMULTIPLICATION NORMALE N		N		5:1	4:1	4:1	6:1	7:1	9:1
Couple max. à l'entrée à 1 400t/mn			Nm	0,88	2,35	4,88	11,8	25,6	60,19
Course pour 1 tour moteur			mm	0,8	1	1	1	1	1
DÉMULTIPLICATION LENTE L		L		20:1	16:1	16:1	24:1	28:1	36:1
Couple max. à l'entrée à 1 400t/mn			Nm	0,39	0,84	1,6	3,86	8,01	20,15
Course pour 1 tour moteur			mm	0,2	0,25	0,25	0,25	0,25	0,25
Rendement du boîtier		N		0,76	0,84	0,86	0,87	0,89	0,85
		L		0,45	0,62	0,69	0,69	0,74	0,65
Rendement de la vis				0,5	0,42	0,4	0,4	0,36	0,62
Poids du vérin sans vis (kg)	VVADXC	С		0,64	1,02	1,92	3,54	14	26,5
· ·	VVTEMC								
Poids de la vis standard		kg/m		1,05	1,58	2	4,5	8	19

(*) pour des vitesses plus élevées nous consulter. Boitiers en fonte d'aluminium. Lubrification : graisse. Course utile des vis et tailles supérieures : nous consulter.

2 VARIANTES

VVDAXC: La vis se déplace axialement

(La vis doit être immobilisée en rotation) - la charge est solidaire de la vis

VVTEMC: La vis est tournante (Axialement fixe).

L'écrou est solidaire de la charge et se déplace avec elle.

IRRÉVERSIBILITÉ: La vis à 1 filet est pratiquement irréversible, sauf en cas de vibrations importantes.

Prévoir alors un moteur frein.

DISPOSITIFS DE SÉCURITÉ

en option:

- contacteurs électriques de début et fin de course (type VVDAXC)
- écrou double visualisant l'usure de l'écrou portant la charge (type VVTEMC)
- tube carré de protection (type VVDAXC)
- sécurité anti-rotation et anti-translation (type VVDAXC)
- soufflets de protection contre les agents extérieurs.

CONSEILS

de choix , de montage, d'entretien

Ne pas dépasser la vitesse critique ni le 1/3 du temps d'utilisation sur 10'

ATTENTION: à la charge maxi et aux charges latérales.

Bien graisser la vis - Température maxi de fonctionnement 85°C.

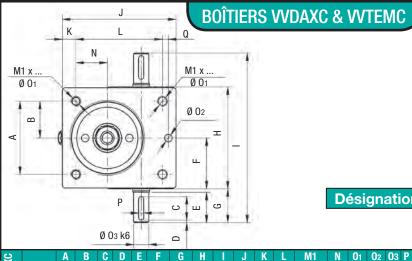
Lubrification huile : surveiller le niveau. Vidanger après 800 heures ou 18 mois.

Lubrification graisse: recompléter après 100 heures - vidanger rincer après 800 h/18 mois

Dès que l'usure de la vis atteint 1/4 du pas = la remplacer.

ATTENTION: un dépassement - même de très courte durée - des limites admissibles (vitesse - charge - durée du travail) peut conduire à des dégâts durables. Ne pas surdimensionner le moteur.

À LA MISE EN ROUTE :


Entraîner l'ensemble manuellement. Rechercher les éventuels **points durs**, **défauts d'alignements**, **forces latérales** et autres défauts.

A noter : après une longue période de non utilisation, le couple peut-être multiplié par 2.

Questionnaire VÉRIN À VIS

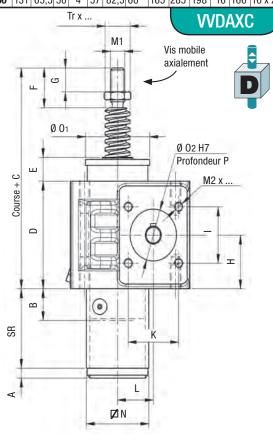
Societe:
Interlocuteur:
Tél.:
Fax.:
e-mail:
Application:
Charge à déplacer :kg
☐ Horizontalement ☐ Verticalement
Levage: Coursemm Vitessem/mn
Guide de la charge : ☐ Aucun ☐ Bague lubrifiée ☐ Linéaire à billes ☐ Autre:
Fréquence d'utilisation sur 10 mn
□ 20% □ 50% □ 60% □ 100% □ Autres:
Nombre d'utilisations par jour ☐ qq levées/jr ☐ 4h/jr ☐ 8h/jr ☐ 16h/jr ☐ 24h/jr
2 types de vérins 🔾 Vis montante 🗘 Ecrou montant
Ambiance
☐ Propre ☐ Poussiéreuse ☐ Très sale, corrosive

VÉRINS À VIS : PRÉSENTATION DE LA GAMME

Trapézoïdale	Démulti	plication	Poussé	e maxi	_
Vis Trapé	Normale (N)	Lente (L)	kN	kg	Trx
C2	5:1	20:1	2	200	14 x 4
C5	4:1	16:1	5	500	18 x 4
C10	4:1	16:1	10	1000	20 x 4
C25	6:1	24:1	25	2500	30 x 6
C50	7:1	28:1	50	5000	40 x 7
C100	9:1	36:1	100	10000	60 x 9

Désignation

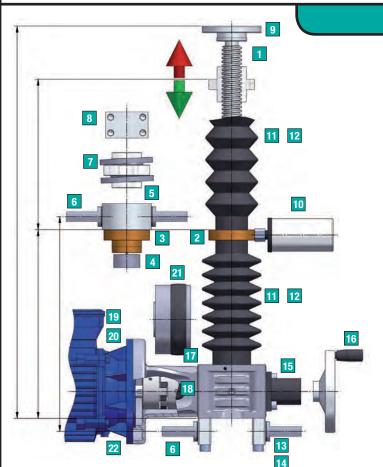
VVDAXC/VVTEMC - xxN/L - Course


Ex.: VVDAXC - 5N - 200

		A	D	U	ע	Е.		u			J	N.	L	IVI	IV	UI	U2	UJ	т.	ų
	C2	43	21,5	14	1,5	18	30	20	60	100	67	8	51	6 x 12	18,5	4,5	4,5	9	3	3,5
₹	C5	52	26	18	1,5	22	36	24	72	120	78	9	60	8 x 12	21	6,5	6,5	11	4	4
Ë	C10	63	31,5	20	2,5	25	42,5	27,5	85	140	98	10	78	8 x 15	29	6,5	6,5	14	5	3
S	C25	81	40,5	32	3	43	52,5	45	105	195	128	11	106	10 x 5	42	8,3	8,3	16	5	4
ž	C50	115	57,5	36	5	45	72,5	47,5	145	240	178	14	150	12 x 16	63	9	9	20	6	5
	C100	131	65.5	50	1	57	22.5	60	165	285	102	16	166	16 v 26	66	12	12	25	Ω	5

Le détail de chaque vérin page 239 et suivantes du catalogue général

WTEMC

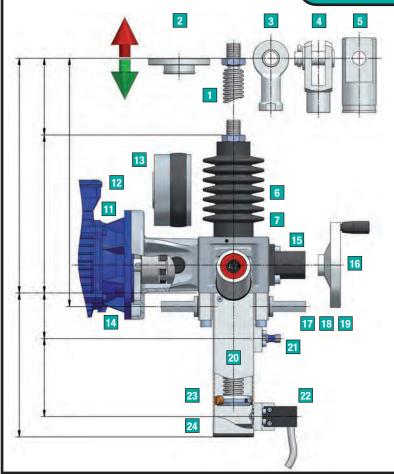


	Tr x	13	VVILIVIO
T.	03 js7		
ш			
1		Visit	ournante
1		et éc	crou mobile
S			
Longueur de la vis : C D	Ø 01		
ur de la			Ø 02 H7 Profondeur P
D			
-			M2 x
14 11		0	
<u>a</u>		-(
			4
4 4		O T	• ±
1 1		4	
		K	
			-
	9	N	

		Α	В	C	D	E	F	G	Н		K	L	M1	M2	N	01	02	P	Tr
	C2	5	16	91	54	12	20	12	27	28,2	28,2	20	8	5 x 6	35	40	26	2,5	14 x 4
ADXC	C5	5	16	107	62	12	29	19	31	32,5	32,5	25	12	6 x 9	35	40	28	3	18 x 4
8	C10	5	16	125	74	15	32	20	37	35,4	35,4	32	14	8 x 10	45	45	35	3	20 x 4
≥	C25	5	16	142	82	16	38	22	41	42	42	42	20	8 x 12	60	55	40	2,5	30 x 6
	C50	5	19	195	116	19	53	29	58	70	50	63	30	10 x 16	80	72	52	4	40 x 7
	C100	5	22	267	160	22	76	48	80	96	46	71	42 x 2	12 x 22	90	90	61	4	60 x 9
		R		•	D	F	F				К	N	M2	01	0:	,	N 3	P	Tr

		В	C	D	Ε	F	Н		K	N	M2	01	02	03	P	Tr
	C2	54	1	11	5	15	27	28,2	28,2	20	5 x 6	40	26	8	2,5	14 x 4
MC	C5	62	18	11	5	15	31	32,5	32,5	25	6 x 9	40	28	12	3	18 x 4
프	C10	74	24	14	5	20	37	35,4	35,4	32	8 x 10	45	35	15	3	20 x 4
≥	C25	82	24	15	5	25	41	42	42	45	8 x 12	55	40	20	2,5	30 x 6
	C50	116	30	17	5	30	58	70	50	63	10 x 16	72	52	25	4	40 x 7
	C100	160	4	20	5	45	80	96	46	71	12 x 22	90	62	40	4	60 x 9

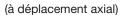
VÉRINS À VIS: ACCESSOIRES

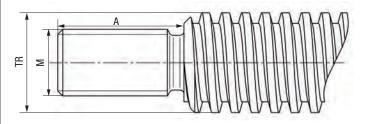


VVTEMC - À ÉCROU MOBILE

- 1 Vis
- 2 Ecrou duplex
- 3 Bride-écrou
- 4 Ecrou de sécurité
- 5 Adapteur-cardan pour bride-écrou
- 6 Tourillons-pivot latéraux
- 7 Entretoises
- 8 Flasque d'entraînement
- 9 Palier à flasque
- 10 Distributeur de lubrifiant
- 11 Soufflet
- 12 Protection spiralée
- 13 Adapteur-cardan long
- 14 Adapteur-cardan court
- 15 Capuchon de protection
- 16 Manivelle
- 17 Lanterne d'adaptation
- 18 Accouplement élastique
- 19 Moteur
- 20 Moteurs-freins triphasés
- 21 Frein à ressorts de pression
- 22 Emetteur d'impulsations incrémentiel

VVDAXC - À DÉPLACEMENT AXIAL

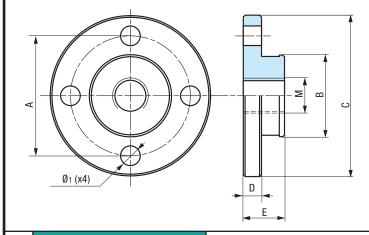




- 1 Vis trapézoïdale
- 2 Plateau de fixation
- 3 Tête sphérique
- 4 Chape
- 5 Tête articulée
- 6 Soufflet
- 7 Protection spiralée
- 11 Moteur
- 12 Moteurs-freins triphasés
- 13 Frein à ressorts de pression
- 14 Emetteur d'impulsations incrémentiel
- 15 Capuchon de protection
- 16 Manivelle
- 17 Adapteur-cardan long
- 18 Adapteur-cardan court
- 19 Tourillons-pivot latéraux
- 20 Tube de protection
- 21 Contacteur de fin de course inductif
- 22 Contacteur de fin de course mécanique
- 23 Protection anti-sortie
- 24 Système anti-rotation

ACCESSOIRES POUR SÉRIE VVDAXC

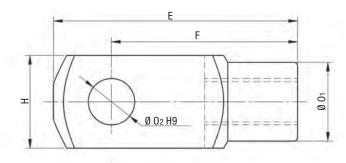
VIS TRAPÉZOÏDALE

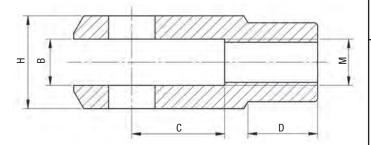


Désignation EC x Taille x VT AX

Taille	Α	TR	M
C2	20	14 x 4	8
C5	29	18 x 4	12
C10	32	20 x 4	14
C25	38	30 x 6	20
C50	53	40 x 7	30
C100	76	60 x 9	42 x 2

EMBOUT

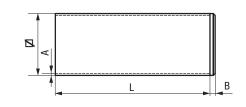

(pour vis ci-dessus)



Désignation EC x Taille x PF

Taille	A	В	C	D	E	Ø 1 (x4)	M
C2	36	20	46	6	20	5,8	8
C5	48	29	65	7	20	9,0	12
C10	60	38	80	8	21	11	14
C25	67	46	90	10	23	11	20
C50	85	60	110	15	30	13	30
C100	117	85	150	20	50	17	42x2

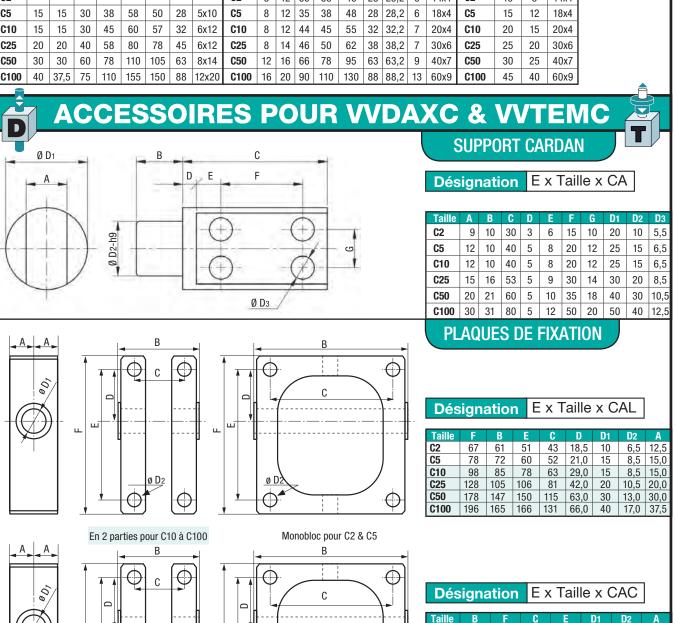
FOURCHE



Désignation EC x Taille x AFK

Taille	н	В	C	D	E	F	01	02	M1
C2	16	8	16	12,0	42	32	14	8	8
C5	24	12	24	18,0	61	48	20	12	12
C10	28	14	28	22,5	72	56	24	14	14
C25	40	20	40	30,0	105	80	34	20	20
C50	60	30	60	42,0	160	120	52	30	30
C100	85	40	84	63,5	232	168	70	40	42x2

TUBE CARRÉ



Taille	A	В	L	
C2	2	5	-	35
C5	2	5	-	35
C10	2	5	-	45
C25	3	5	-	60
C50	3	5	-	80
C100	4	5	-	90

Une demande complète et précise grâce au formulaire de contact sur le site www.prudhomme-trans.com

ACCESSOIRES POUR SÉRIE VVTEMC VIS TRAPÉZOÏDALE **ÉCROU MOBILE PIVOT CARDAN** Pour écrou Pour vis tournante Vis tournante Uniquement avec écrou С Duplex pour taille 25. À embout : **EMEB** D A-C10 Α В Ø de perçage : 00 В Sans embout : EM EC x Taille x CAB EC x Taille x ET RF EC x Taille x TV EMEB/EB **Désignation Désignation** Dés. C2C212 35 38 48 28 28,2 6 14x4 C215 8 14x4 C5 15 15 30 38 58 50 28 5x10 C5 12 35 38 48 28 28,2 6 18x4 C5 15 12 18x4 30 32 12 45 32 32,2 7 20x4 20 C10 15 15 45 60 57 6x12 C10 8 44 55 C10 15 20x4 C25 20 20 40 58 80 78 45 6x12 C25 8 14 46 50 62 38 38,2 7 30x6 C25 25 20 30x6 25 C50 30 30 60 78 110 105 63 8x14 C50 12 16 66 78 95 63 63,2 9 40x7 0.5030 40x7 C100 40 37,5 75 110 155 150 88 12x20 C100 16 20 90 110 130 88 | 88,2 13 60x9 C100 45 40 60x9 **VVDAXC** & SUPPORT CARDAN Ø D1 В C

ø D2

C2

C5

C10

C25

C50

C100

69

80

100

130

180

200

59

70

83

103

143

161

51

60

78

106

150

166

43

52

63

81

115

131

10

15

15

20

30

40

6,5

8,5

8,5

10,5

13,0

17.0

12,5

15,0

15,0

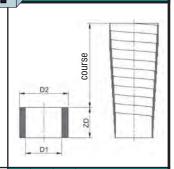
20,0

30,0

37.5

SOUFFLETS MÉTALLIQUES

Le soufflet de protection est destiné à protéger la vis des saletés et de l'humidité, des poussières de construction, les poussières de meulage...


Tenir également compte du fait que la durée de fonctionnement du vérin est réduite en raison de l'effet thermo-isolant du soufflet de protection.

Attention : La cote **ZD** ne doit pas être dépassée en compression et la cote **AZ** ne doit pas être dépassée en extension.

En cas de montage horizontal, s'assurer que le soufflet de protection ne puisse pas toucher la vis : risque de détérioration !

Pour cela, utiliser les supports intermédiaires internes disponibles sur demande.

Pour des raisons techniques, veuillez indiquer dès votre demande la position du soufflet (horizontale ou verticale).

			D1	D2	ZD	oou	36
			٠,	52	20	horizontale	verticale
	5	045/350/030	45	65	30	290	350
	٥	045/550/050	45	68	30	450	550
		050/350/030	50	73	30	290	350
	10	050/550/050	50	73	30	450	550
	10	050/750/060	50	80	30	630	750
		050/1100/100	50	77	30	900	1100
		060/350/050	60	78	50	250	350
	25 Zaille	060/550/060	60	81	60	430	550
٩		060/750/075	60	89	75	600	750
150		060/1100/075	60	102	75	950	1100
		075/350/050	75	95	50	250	350
	50	075/750/060	75	109	60	630	750
	30	075/1100/100	75	108	100	900	1100
		075/1500/100	75	120	100	1300	1500
		100/350/060	100	126	60	230	350
	100	100/800/075	100	138	75	650	800
	100	100/1200/100	100	137	100	1000	1200
		100/1800/150	100	151	150	1500	1800

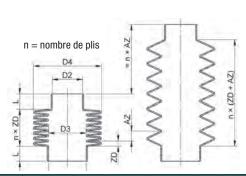
SOUFFLETS SOUPLES

Les soufflets métalliques peuvent se monter sur des machines produisant ou non des copeaux. En cas de montages combinés utilisant différents composants, des bagues de centrage sont nécessaires.

Important : En aucun cas, les spires du soufflet ne doivent se séparer.

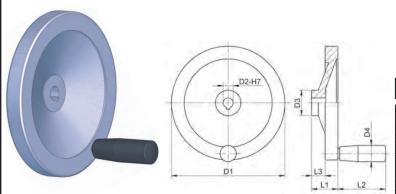
Pour des raisons techniques, veuillez indiquer dès votre demande la position du soufflet (horizontale ou verticale).


En cas de montage vertical, il est recommandé de monter le ressort grand diamètre vers le haut, et en cas de montage horizontal, grand diamètre côté carter.


Un mince film d'huile déposé sur le ressort en augmentera les performances et la longévité.

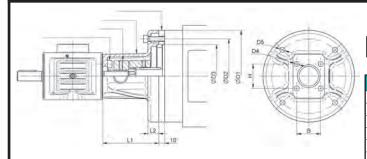
En cas d'utilisation avec des VVTEM il est nécessaire de percer des trous de ventilation afin de prévenir les risques de collage sur la vis.





Taille	L	ZD*	AZ*	D1	D2	D3	D4
2-5	10	2,1	10,5	26	34	30	52
10-50	20	3,5	24,5	30/40/50	30/40/50	50	90
100	20	2	26	68/88	68/88	70	130

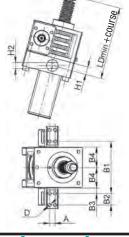
AUTRES ACCESSOIRES



EC x TAILLE x VOLANT **Désignation**

D1	D3	L3	L1	L2	D4	D2
						Avec rainure de clavette
60	18	15	22	52,5	21	09/11
80	26	16	26	42,5	18	11
125	31	18	33	67,5	23	11/14
160	36	20	39	82,5	26	14/16
200	42	24	45	82,5	26	16/20
250	48	28	51	92,5	28	20/25

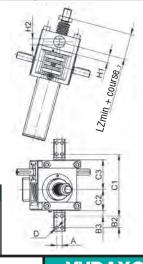
LANTERNE D'ADAPTATION DU MOTEUR ÉLECTRIQUE



EC x TAILLE x LAN **Désignation**

Longueur	L1	L2	В	Н	D1	D2	D3	D4	D5
2	55,0	12,0	28,3	28,3	120	100	80	5,5	6,6
5	65,0	12,0	32,5	32,5	140	115	95	6,6	9,0
10	70,5	17,0	35,4	35,4	160	130	110	9,0	9,0
25	98,0	19,0	42,0	42,0	160	130	110	9,0	9,0
50	110,5	23,5	50,0	70,0	200	165	130	11,0	11,0
100	142,0	25,0	46,0	96,0	200	165	130	13,0	11,0

MONTAGE CARDANIQUE


EC x TAILLE x CAL **Désignation**

Taille	H1	H2	Α	D	B1	B4	B2	В3	C1	C2	C3
5	15,0	12	12	6,5	98	36,0	20	13	106	31	49
10	15,0	12	12	6,5	111	42,5	20	13	126	40	60
25	20,0	15	14	8,5	133	52,5	30	14	158	54	76
50	30,0	20	18	10,5	175	72,5	35	15	210	78	102
100	37.5	30	20	12.5	199	82.5	50	17	232	82	116

EC x TAILLE x CAC **Désignation**

RINS EQUIPE	SD	E V	<u>IS /</u>	<u> </u>		ES								V	DAXC	B
	Taille	KGT	SN*	SL*	H1	H2	H3 (min.)	H4	H5	Н6	D1	D2	M	Jeu axial [max.]	Poussée dynamique	
	5	16x05	1.25	0,31	62	66	10	29	12	19	55	40	M12	0,08	9,3	13,1
(11)	-	16x10	, -	0,63	62	66	20	29	12	19	55	40	M12	0,08	15,4	26,5
D1	10				74	76	10	32	14	20	70	45	M14			
- D2	10	25x05		0,31	74	76	_			_	70	45		0,08	12,3	22,5
		25x10	,	0,63			20	32	14	20			M14	0,08	13,2	25,3
		25x25		1,56	74	76	50	32	14	20	70	45	M14	0,08	16,7	32,2
		25x50	12,50	3,13	74	76	100	32	14	20	70	45	M14	0,15	15,4	31,7
	25	32x05	0,83	0,21	82	90	10	38	15	22	90	55	M20	0,08	21,5	49,3
		32x10	1,67	0,42	82	90	20	38	15	22	90	55	M20	0,08	33,4	54,5
100		32x20	3,33	0,83	82	90	40	38	15	22	90	55	M20	0,08	29,7	59,8
		32x40	6,67	1,67	82	90	80	38	15	22	90	55	M20	0,08	14,9	32,4
	50	40x05	0,71	0,18	116	84	10	53	19	29	130	72	M30	0,08	23,8	63,1
		40x10	1,43	0,36	116	84	20	53	19	29	130	72	M30	0,08	38,0	69,1
9 9		40x20	2,86	72	116	84	40	53	19	29	130	72	M30	0,08	33,3	76,1
		40x40	5,71	1,43	116	84	80	53	19	29	130	72	M30	0,08	35,0	101,9
	100	50x10	1,25	0,31	160	92	20	76	22	48	150	90	M42x2	0,08	68,7	155,8
		50x20	2,5	0,63	160	92	40	76	22	48	150	90	M42x2	0,08	60,0	136,3
		*Dépla	cement	axial p	ar tour	à l'en	trée du v	vérin (r	nm)				,			

ACCOUPLEMENTS DENT

L'accouplement DENTEX : acier/plastique compense des déports axiaux, radiaux et angulaires.

Le couple est transmis par deux moyeux dentés solidarisés entre eux par une couronne plastique à dents bombées.

Les accouplements DENTEX conviennent aux raccordements d'arbres horizontaux ou verticaux et permettent un montage simple et rapide.

L'utilisation de polyamide 6.6 pour la couronne en plastique optimise les performances de glissement et d'usure, ainsi que la résistance à la plupart des lubrifiants et liquides hydrauliques.

Ils peuvent être utilisés à des températures comprises entre -25°C et +80°C.

Des couronnes existent dans d'autres matières plastiques permettant une utilisation de jusqu'à 140°C.

Des versions de couronnes munies de circlips permettent, à dimension égale, une vitesse de rotation plus élevée.

Des moyeux flasqués sont également disponibles. Nous consulter.

Moment

d'inertie

0.000030

0,000470

0,000093

0,000310

0.000550

0,000870 1,490 0,001400

0,001800

0,009900

0.037000

radial

± 1

par moyeu

 ± 0.3

 ± 0.4

 ± 0.6

 ± 0.7

 ± 0.8

3.450 0.004600

20,50 0,115600

40 0.175

0,320

0,739

0,950

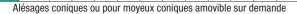
1,220

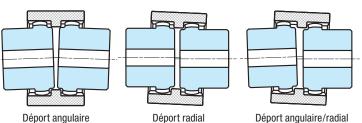
1,810

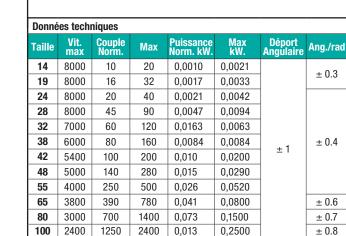
5,180

11,50

М5 6 50 0,316


10 55


10 55


10 60

10 60 10 60

Т	aille	14	24	28	32	38	42	48	55	65	80	100		alésage	тах											Ī
	6	0											Taille	ėss	9			L	11	Ε	н	C	F			ı
	7	0											Taille	a	Alésage	Α	В	L		E	п	L L	Г,	g	Ι.	ı
	8	0												Pré	<u>és</u>											ı
	9	0												-	⋖											Į
	10	0											14	5	14	40	25	50	23	4	15	6,5	37	M5	6	l
	11	0		0		_								-	40	40	00		0.5	\vdash		-	07	145	-	t
	12	0		0									19	8	19	48	30	54	25	4	17	7,0	37	M5	6	l
6	14 15	0	0	0	0	0							24	9	24	52	36	56	26	4	17	7,5	41	M5	6	Ī
S	16		ŏ	ŏ	ŏ	ŏ								-						₩	-	-		-	l i	ł
DIN 6885 (JS9)	17		ŏ	ŏ		_							28	9	28	66	44	84	40	4	20	19,0	46	M8	10	l
88	18		ŏ	ŏ	0	0							32	11	32	76	50	84	40	1	20	18,0	48	M8	10	t
9	19		Ŏ	Ö	Ŏ	Ŏ							32	11	32	70	50	04	40	4	20	10,0	40	IVIO	10	ļ
	20		0	0	0	O							38	12	38	83	58	84	40	4	20	18,0	48	M8	10	l
clavette normalisée	22		0	0	0	0							1	40	40		0.5		40	١.		40.0		140	10	t
<u></u>	24		0	0	0	0							42	16	42	92	65	88	42	4	22	19,0	50	M8	10	l
E	25		0	0	0	0	0						48	16	48	100	68	104	50	4	22	27,0	50	M8	10	Ī
6	28			0	0	0	0	0	0				<u> </u>							-		-	_		-	+
	30				0	9	0	0	0				55	_	55	125	83	124	60	4	30	30,0	65	M10	20	l
븅	32				0	0	0	0	0				65	0/30	65	140	96	144	70	1	22	36,0	72	M10	20	t
3	35 38					0	0	0	0	0	0		05	0/30	03	140	90	144	70	4	32	30,0	12	IVITU	20	
	40					-	0	8	8	8	ö		80	_	80	175	124	186	90	6	45	46,5	93	M10	20	l
rainure de	42						ŏ	ō	ō	0			100	25	100	010	150	000	110	0	ГГ	00.0	100	1410	20	t
	45							Ŏ	Ŏ	Ŏ	0	0	100	35	100	210	152	228	110	g	ວວ	63,0	102	M12	30	
<u>.</u>	48							0	O	Ö			H est	la dist	ance	minim	ale a	ui doit	etre	dis	spor	ible p	our le	mont	age	
55	50								0	0		0									-					-
#	55								0	0	0	0]													
_	60									0	0	0	1		*****					****			ı			
	65										0		I		445	T		_		\Rightarrow	8			_		
	70										0	0		_							۱۲					ľ
	75								-		0	0			4						ЦL					

ACCOUPLEMENTS ÉLASTIQUES SPIDEX

Les ACCOUPLEMENTS SPIDEX sont constitués de deux moyeux en aluminium ou en fonte et d'une étoile; ils peuvent être livrés préalésés ou avec un alésage H7 et une rainure normalisée Js9.
Les moyeux existent en deux formes A et B; la forme B permet des alésages

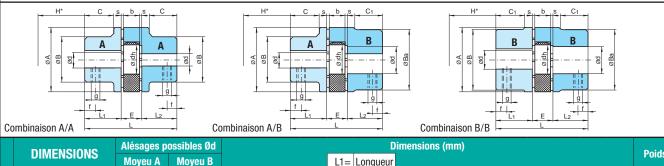
plus importants et existe, pour certaines dimensions, en différentes longueurs.

Sur demande les moyeux peuvent être livrés avec des alésages pour moyeux coniques amovibles ou des alésages coniques adaptés aux arbres de pompes.

COUPLES NOMINAUX TRANSMISSIBLES

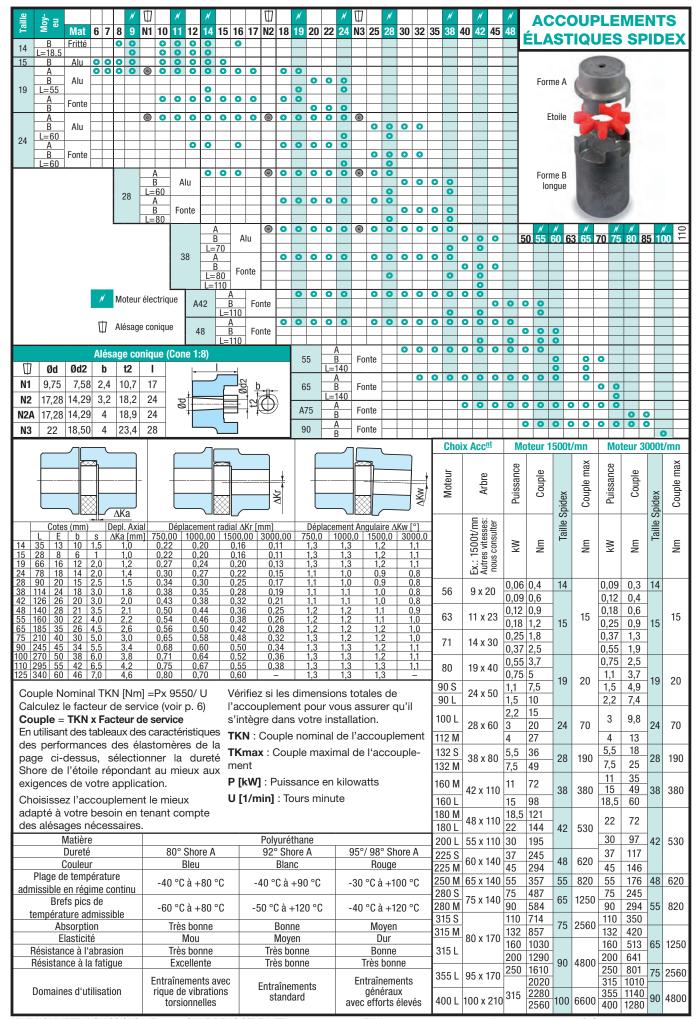
Les étoiles existent en 3 duretés Shore : 92,95 et 98. Les accouplements SPIDEX peuvent fonctionner à des températures comprises entre -40°C et +120°C.

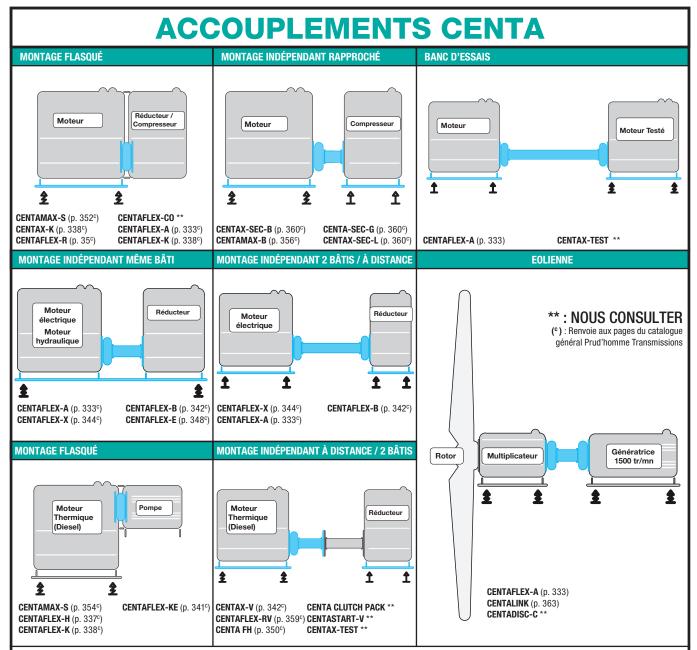
Les accouplements SPIDEX atténuent les brèves variations de couple en accumulant temporairement une partie de l'énergie.


L'étoile élastique en compression SPIDEX, transfère le couple par clabotage, sans risque de se fendre.

La forme à développante en profil bombé permet de compenser les déports radiaux et angulaires.

Elle est constituée d'un élastomère thermoplastique, soumis à la charge sous pression possède une bonne élasticité, de bonnes propriétés d'amortissement et une bonne résistance aux huiles, graisses, à de nombreux solvants, aux


intempéries ainsi qu'à l'ozone. La dureté standard de l'étoile est de 92° Shore A et pour des couples les plus élevés de 95° à 98° Shore A.


Le coefficient de rigidité torsionnelle varie en fonction du couple de torsion.

	DIMENCIONO	Alésa	ages p	ossible	es Ød						D	imens	ions (r	nm)							Doido
	DIMENSIONS	Moy	eu A	Moy	eu B					L1=	Longueur										Poids
		Min	Max	Min	Max	Α	В	Ba	L	L2	spéciale	Ε	S	b	С	C1	dh	g	f	Н	(kg)
	Alu moulé par injection	(AI)																			
	A15	_	_	4	15	26	_	26	28	10	-	8	1	6	_	_	12	M5	5	8	0,03
_	A19/24	6	19	19	24	40	32	39	66	25	55	16	2	12	20	21	18	M5	10	14	0,13
ALU	A24/32	8	24	16	32	55	40	53	78	30	60	18	2	14	24	26	27	M5	10	16	0,26
	A28/38	10	28	28	38	65	48	63	90	35	60	20	2,5	15	28	29	30	M6	15	18	0,46
	A38/45	14	38	38	45	80	66	79	114	45	70	24	3	18	37	39	38	M8	15	19	0,90
	Fonte grise (GG) - Fonte	e sphéi	roïdale	(GGG	- Aci	er (St)	 Acie 	r fritté													
	A14/16 Si	_	_	4	16	30	_	30	35	11	18,5	13	1,5	10	_	_	10	M4	5	12	0,14
	A19/24 GG/St/Si	6	19	12	24	40	32	39	66	25	55	16	2	12	20	21	18	M5	10	14	0,35
	A24/32 GG/St/Si	10	24	14	32	55	40	52	78	30	60	18	2	14	24	26	27	M5	10	16	1,0
	A28/38 GG/St/Si	12	28	28	38	65	48	62	90	35	80	20	2,5	15	28	29	30	M6	15	18	1,6
ш	A38/45 GG/GGG/St/Si	14	38	38	45	80	66	77	114	45	110	24	3	18	37	37	38	M8	15	19	2,3
GRISE	A42/55 GG/GGG/St	19	42	42	55	95	75	94	126	50	110	26	3	20	40	40	46	M8	20	21	3,6
25	A48/60 GG/GGG/St	19	48	48	60	105	85	102	140	56	110	28	3,5	21	45	45	51	M8	20	22	4,8
뿔	A55/70 GG/GGG/St	19	55	55	70	120	98	118	160	65	140	30	4	22	52	52	60	M10	20	23	7,4
FONTE	A65/75 GG/GGG/St	22	65	65	75	135	115	132	185	75	140	35	4,5	26	61	59	68	M10	20	27	10,9
	A75/90 GG/GGG/St	30	75	75	90	160	135	158	210	85	195	40	5	30	69	65	80	M10	25	31	17,7
	A90/100 GG/GGG/St	40	90	90	100	200	160	180	245	100	140/210	45	5,5	34	81	81	100	M10	25	35	29,5
	A100/110 GG/GGG/St	-	_	55	110	225	_	200	270	110	-	50	6	38	_	89	113	M16	30	39	43,5
	A110/125 GG/GGG/St	-	_	65	125	255	_	230	295	120	-	55	6,5	42	_	96	127	M16	35	43	63
	A125/145 GG/GGG/St	-	-	65	145	290	-	265	340	140	-	60	7	46	-	112	147	M16	40	47	95

	Dureté	Taille		Couple		Vitesse tr/mn	Angle de	torsion	Rigidit	é torsionne	lleCdyn [kN	m/rad]	Amortissement
	Durete	Tallie	Nominal	Maximal	Alternatif	maximale	Nomin.	Max.	100%	75%	50%	25%	relatif
		14/15	7,5	15	2,0	19000	6.4°	10°	0,38	0,31	0,24	0,14	
		19/24	10	20	2,6	14000			1,28	1,05	0,80	0,47	
		24/32	35	70	9,1	10600			4,86	3,98	3,01	1,79	
		28/38	95	190	25	8500			10,90	8,94	6,76	4,01	
		38/45	190	380	49	7100			21,05	17,26	13,05	7,74	
		42/55	265	530	69	6000			23,74	19,47	14,72	8,73	
	92° Shore	48/60	310	620	81	5600			36,70	30,09	22,75	13,49	0,75
	Blanc	55/70	410	820	107	4750	3.2°	5°	50,72	41,59	31,45	18,64	0,73
		65/75	625	1250	163	4250			97,13	79,65	60,22	35,70	
		75/90	1280	2560	333	3550			113,32	92,92	70,26	41,65	
		90/100	2400	4800	624	2800			190,09	155,87	117,86	69,86	
		100/110	3300	6600	858	2500			253,08	207,53	156,91	93,01	
		110/125	4800	9600	1248	2240			311,61	255,52	193,20	114,52	
		125/145	6650	13300	1729	2000			474,86	389,39	294,41	174,51	
		14/15	12,5	25	3,3	19000	6.4°	10°	0,56	0,46	0,35	0,21	
		19/24	17	34	4,4	14000	0.4	10	2,92	2,39	1,81	1,07	
		24/32	60	120	16	10600			9,93	8,14	6,16	3,65	
	98° Shore	28/38	160	320	42	8500			26,77	21,95	16,60	9,84	
?	Rouge	38/45	325	650	85	7100	3.2°	5°	48,57	39,83	30,11	17,85	
1		42/55	450	900	117	6000	0.2	3	54,50	44,69	33,79	20,03	
5		48/60	525	1050	137	5600			65,29	53,54	40,48	24,00	0,7
		55/70	685	1370	178	4750			94,97	77,88	58,88	34,90	. 0,1
1		65/75	940	1880	244	4250			129,51	106,20	80,30	47,60	
		75/90	1920	3840	499	3550			197,50	161,95	122,45	72,58	
	95° Shore	90/100	3600	7200	936	2800	3.2°	5°	312,20	256,00	193,56	114,73	
	Rouge	100/110	4950	9900	1287	2500	0.2	J	383,26	314,27	237,62	140,85	
		100/125	7200	14400	1872	2240			690,06	565,85	427,84	253,60	
		125/145	10000	20000	2600	2000			1343,64	1101,79	833,06	493,79	
		Pour vitesses V > 30m/s, un équilibrage dynamique est requis											

LE CHOIX D'UN ACCOUPLEMENT

Aucun accouplement — même le plus robuste — ni aucun ensemble de transmission mécanique, ne résiste à une mauvaise prise en considération des vibrations et des phénomènes de résonance auxquels ils sont soumis et tout particulièrement quand l'organe moteur est un moteur Diesel.

Les calculs doivent tenir compte non seulement d'une connaissance très exacte des moments d'inertie et rigidités torsionnelles du moteur, mais aussi de ceux de la machine entraînée en raison de la difficulté de réaliser de tels calculs. (TVC)

NOUS VOUS CONSEILLONS AVEC UNE PARTICULIÈRE INSISTANCE D'INTERROGER SYSTÉMATIQUEMENT NOTRE BUREAU TECHNIQUE.

Celui-ci possède un logiciel de calcul de vibrations torsionnelles et une base de données regroupant les caractéristiques techniques des moteurs, des réducteurs, des boites de répartition, des pompes...fabriquées par les principaux constructeurs mondiaux. Nous sommes de plus en liaison permanente avec le bureau d'études CENTA dont l'expérience accumulée depuis 40 années permet de vérifier la validité de certain choix.

MAIS, ATTENTION... si les caractéristiques du moteur et ses vitesses critiques sont en général connues avec précision car fournies par son fabricant, par contre, les renseignements concernant la machine entraînée et ses conditions de fonctionnement (à-coups, fréquence des démarrages, inversions de marche, brutalité du démarrage, influence de la température (notamment sur la viscosité) et des agents extérieurs, durée de fonctionnement...) sont, en réalité, plus souvent évalués que mathématiquement connus, d'où une incertitude quant à la valeur du choix opéré.

IL EST DONC INDISPENSABLE S'IL S'AGIT D'UNE FABRICATION EN SÉRIE, DE TOUJOURS BIEN VÉRIFIER, PAR DES ESSAIS RÉPÉTÉS EN TRAVAIL RÉEL, LA JUSTESSE DU CHOIX EFFECTUÉ, AVEC - BIEN ENTENDU - DES INCIDENTS VOLONTAIREMENT PROVOQUÉS.

D'autres questions annexes sont aussi à vérifier : dimensions des arbres, interfaces, ventilation,... et également les problèmes d'alignement. Il peut paraître paradoxal d'évoquer l'alignement alors qu'il s'agit d'un accouplement à haute élasticité, mais il n'en reste pas moins vrai que, meilleur est l'alignement, et plus grande est la longévité de l'accouplement et des organes annexes.

CENTA fabrique une gamme complète d'accouplements. L'objectivité de son choix ou de ses conseils ne saurait donc être mise en doute. La diffusion mondiale de ses productions est un sûr garant de la qualité de ses orientations et de ses fabrications.

RELIRE TRÈS ATTENTIVEMENT LA PRÉFACE pages 5 et 6 du catalogue général

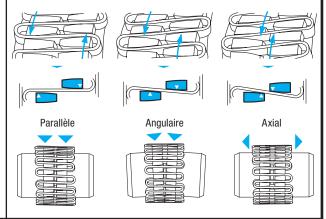
ACCOUPLEMENTS ÉLASTIQUES À RESSORT

nouveau

TOUT EN ACIER

Issus des usines ayant initié ce type d'accouplements et qui a donc pu profiter d'améliorations régulières qui en font un des meilleurs accouplements à ressorts disponible sur le marché.

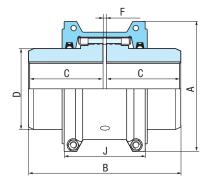
Un des accouplements les plus aptes à absorber les à-coups et les vibrations, tolérant des désalignements angulaire, parallèle et axial des arbres tout en acceptant des couples importants.

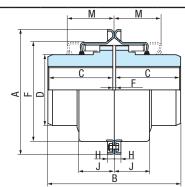

Disponible rapidement soit à partir de notre stock pour les petites tailles, soit de l'usine pour les grandes tailles, où les composants sont prêts à être usinés et montés pour répondre rapidement à votre demande.

Certifié Atex

- Carter de protection s'ouvrant horizontalement
- Adapté à tout type d'applications
- Ressort d'accès facile permettant un remplacement rapide et minimisant les temps de maintenance

AER-....-V


- Carter de protection s'ouvrant verticalement
- Adapté tout type d'applications
- Idéal pour des vitesses de rotation élevées



Cet accouplement existe en **2 versions** qui utilisent les mêmes flasques et ressorts mais sont équipés de capots de protection différents.

Les ressorts sont faciles à installer manuellement.

Ces accouplements doivent être lubrifiés régulièrement par l'intermédiaire des trous de lubrifications prévus dans les capots.

		814-							8.6 - 42	1- 11						2.0	- 421- W			
	Couple		sage	В	C	D			Modè							IVI	odèle V			
Type		mini.	maxi.				E	F	Vites. max.	Poids	Inertie	Α	Α	F	G	Н		E	Poids	Inertie
	Nm			mm			m	m	t/mn	kg	kgm ²	mm			n	nm			kg	kgm²
2020	52	13	27	98	47,5	39,7	67	3,2	4500	1,8	0,0014	102	111	63,0	9,5	24,4	48,0	63	1,6	0,0011
2030	149	13	35	98	47,5	49,2	68	3,2	4500	2,4	0,0022	111	121	72,0	9,5	25,2	48,0	72	2,2	0,0018
2040	249	13	44	105	50,8	57,2	70	3,2	4500	3,2	0,0033	118	129	80,0	9,5	26,0	51,0	80	3,0	0,0027
2060	435	13	51	124	60,2	66,7	79	3,2	4500	6,2	0,007	138	148	97,0	13,0	31,4	61,0	97	5,0	0,006
2060	684	19	57	130	63,6	76,2	92	3,2	4350	7,1	0,012	151	162	110,0	13,0	32,2	64,0	110	6,7	0,010
2070	994	19	68	156	76	87,3	95	3,2	4125	10,1	0,018	162	173	121,0	13,0	33,8	67,0	121	9,7	0,016
2080	2 060	25	83	181	89	104,8	116	3,2	3600	17,3	0,045	194	200	149,0	13,0	44,1	89,0	149	17	0,039
2090	3 730	25	96	200	98,4	123,8	122	3,2	3600	24,6	0,079	213	232	168,0	13,0	47,3	96,0	168	23,6	0,072
2100	6 280	42	108	246	102,6	142,1	156	4,8	2440	41,2	0,18	251	267	198,0	16,0	60,2	121,0	198	40	0,17
2110	9 320	42	117	259	127	160,4	163	4,8	2250	63,6	0,27	270	286	216,0	16,0	63,3	124,0	216	51,9	0,26
	kNm			mm			m	m	t/mn	kg	kgm ²	mm			n	nm			kg	kgm²
2120	13,7	60	137	305	149,2	179,4	192	6,4	2025	78,7	0,61	308	319	246,0	16,0	73,8	143,0	246	78,8	0,50
2130	19,9	66	166	330	161,9	217,5	195	6,4	1800	118	0,99	347	378	284,0	22,0	75,4	147,0	284	115	1,08
2140	28,6	66	184	375	184,1	254,0	201	6,4	1650	176	1,86	384	416	322,0	22,0	78,5	156,0	322	173	1,90
2150	37,0	108	215	372	183	270,0	272	6,4	1500	213	3,49	453								
2160	51,0	120	240	402	198	305,0	278	6,4	1360	310	5,92	602								
2170	67,8	135	280	438	216	356,0	307	6,4	1226	148	10,42	667	Dá	sign	atio	ηΔ	ER 1	Гуре	<u> </u>	ou H
2180	94,08	160	300	484	239	394,0	321	6,4	1100	619	18,3	630	De	Sigil	atio	^	LII	уре	, v	ou II
2190	124,0	160	335	524	260	437,0	325	6,4	1060	776	26,2	676				Exe	emple : A	ER202	20H	
2200	169,0	178	360	665	280	498,0	356	6,4	900	1057	43,6	767								

CARDANS PLASTIQUES

AI RF4PI A

Joints, sphère et goupilles en R4FI

Caractéristiques

Couple modéré applicable, basse vitesse résistance à très haute température

Applications

Toutes les industries et en contact direct ou indirect avec des composants alimentaires et pharmaceutiques

Désignation

ALRFPLA SP ou PS AL ou A ou V

AR4PI A

Joints, sphère et goupilles en R4FI. Bagues en acier inoxydable

Caractéristiques

Fort couple applicable, grande vitesse résistance à très haute température

Applications

Toutes les industries et en contact direct ou indirect avec des composants alimentaires et pharmaceutiques

Désignation

AR4PLA SP ou PS AL ou A ou V

R4PLA

Le composé breveté R4PLA, permet le contact et la manipulation directe des produits alimentaires et pharmaceutiques. Combiné à l'acier inoxydable (AISI304, AISI316) les cardans permettent aux usagers finaux d'utiliser les produits en contact direct ou indirect avec des produits alimentaires et pharmaceutiques.

Disponible en trois versions: ALR4PLA, AR4PLA, VR4PLA ainsi que les très performants hybrides: R4PLA-SP, R4PLA-PS, tous deux disponibles dans les versions: AL, A, V.

La combinaison acier inoxydable et R4PLA offre de multiples avantages : auto-lubrification et produits sans poussière ainsi que de la haute résistance à la corrosion chimique; jusqu'à une résistance à la température de 250°; tout en conservant une grande légèreté qui supporte de grandes vitesses.

La série basée sur le R4PLA permet une performance supérieure.

ALR4FILT

Joints et sphère et goupilles en R4FILT

Caractéristiques

Couple applicable modéré, vitesse faible résistance à haute température

Applications

Toutes les industries et en contact direct ou indirect avec des composants alimentaires et pharmaceutiques

Désignation

ALRFPLA SP ou PS AL ou A ou V

AR4FILT

Joints et sphère en R4FILT Bagues et goupilles en acier inoxydable

Caractéristiques

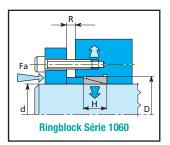
Couple applicable modéré, vitesse moyenne résistance à haute température

Applications

routes les industries et en contact direct ou indirect avec des composants alimentaires et pharmaceutiques

Désignation

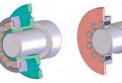
AR4PLA SP ou PS AL ou A ou V


R4PLALT

Reprenant les caractèristiques du R4PLA, ces versions plus légères associent des performances accrues à un coût réduit. A noter que l'association R4PLALT et acier inoxydable (AISI304, AISI316) renforce les possibilités d'usage en contact direct ou indirect avec des produits alimentaires et pharmaceutiques.

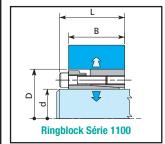
Disponible en trois versions: ALR4PLA, AR4PLA, VR4PLA ainsi que les très performants hybrides: R4PLA-SP, R4PLA-PS,

tous deux disponibles dans les versions: AL, A, V. La combinaison acier inoxydable et R4PLA offre d'étendues possibilités: auto-lubrification, anti-poussière, très haute résistance à la corrosion chimique, résistance à la température de 150°, très grande légèreté supportant de grandes vitesses. La série basée sur le R4PLALT est la réponse à un besoin spécifique contenue dans un budget serré.

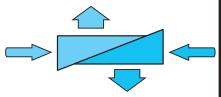

BAGUES DE BLOCAGE "MOYEU/ARBRE"

RINGBLOCK

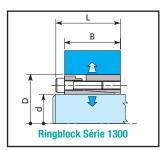
BASÉES SUR LE PRINCIPE DU SERRAGE PAR BAGUES CONIQUES CONTRARIÉES


Les bagues Ringblock garantissent un blocage simple et sûr entre arbre et moyeu et cela, absolument sans jeu. Ce dispositif d'assemblage par friction élimine radicalement l'exécution coûteuse des rainures de clavettes ou de cannelures. assure la transmission de forces radiales. axiales et tangentielles avec une extrême

précision de concentricité. L'utilisation des bagues Ringblock réduit les coûts de production, évite les usinages à tolérances serrées et les états de surface particuliers, facilite le montage et le démontage des éléments assemblés.

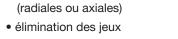


E PRINCIPE

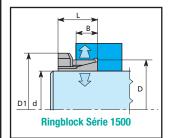

RAINURE DE CLAVETTE INUTILE

ASSEMBLAGES AVEC

LARGE TOLÉRANCE (h8 - H8)


Vis à haute résistance (serrage indispensable par clé dynamométrique)

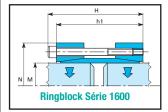
Ringblock Série 1120



• calage aisé en toutes positions

- transmission de couples élevés
- montage simple
- mise en oeuvre sans problème
- démontage facile
- moindre coût de production

L'utilisation des baques de pression Ringblock donne une sécurité totale dans la fixation des pignons, engrenages, poulies, roues à chaîne, des cames, des disques de freins, des tambours ou des rouleaux de convoyeurs, des volants, etc.



Série 1300 - P. 547*

Série 1120 - P. 546*

* Voir dans le catalogue général

SERRAGE <u>MÉCANIQUE</u> TRÈS SÛR

SYSTÈME IDÉAL **POUR LES GRANDS DIAMÈTRES**

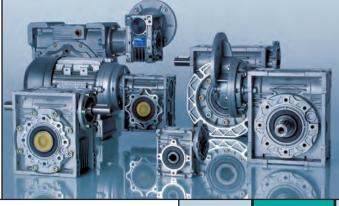
MOTORÉDUCTEURS ÉCONOMIQUES PH

Une gamme complète de réducteurs et motoréducteurs économiques Faciles à implanter et à utiliser ils sont livrés prêts à l'emploi En standard ils sont à arbres creux

PHM

Rapports standard	Ces réducteurs de forme										
1/7,5	parallélépipédique se caractérisent										
1/10	par une grande facilité de montage dans toutes les positions.										
1/15	Les carters des tailles 25 à 90 sont en alumi-										
1/20	nium et en fonte pour les tailles 110 et 130.										
1/25	Afin d'assurer une bonne protection										
1/30	tous les carters sont peints (RAL 9022)										
1/40	la version PHMR (arbre d'entrée) per une utilisation manuelle.										
1/50	Lubrification et entretien voir page 524										
1/60	du catalogue général.										
1/80	Les réducteurs rapports 1/80 et 1/100 sont stati- quement irréversibles. Toutefois, pour un maintien										
1/100	rigoureux de la position, l'utilisation d'un système de blocage (frein ou autre) reste nécessaire.										
	,										

PHM À DOUBLE ÉTAGE


Rapports standard

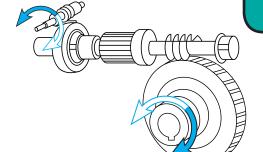
de 1/90 à 1/300

Avec étage intermédiaire ou double réduction.

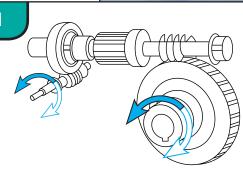
L'adjonction d'un étage intermédiaire permet d'augmenter le rapport réduction obtenu dans un encombrement limité. Il est également possible d'installer en série deux motoréducteurs de la gamme PHM.

Nous consulter.

Consultez notre site Internet


www.prudhomme-trans.com

afin d'obtenir les caractéristiques détaillées de tous ces réducteurs et motoréducteurs économiques.


N'hésitez pas à contacter notre bureau technique qui pourra vous aider dans votre choix pour une installation neuve comme pour le remplacement d'un réducteur existant.

La plupart des modèles existants peuvent être remplacés par un des modèles de notre gamme PH.

SENS DE ROTATION

MOTORÉDUCTEURS PHM																
25							30					40				
Rapport de Réduction	Vitesse sortie (mot. 1400 t/mn)	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400t/mn N	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400 t/mn N	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400t/mn N
7,5	186,7		3,8	2,8				9	2,1				22	1,6		
10	140		5	2,4				11	1,6			0.55	30	1,4		
15	93,3		7,2	1,6			0,22	16	1,0			0,55	44	0,9		
20	70		9	1,3				20	0,9				38	1,0		
25	56	0,09	10	1,0	1350	390		20	1,0			0.07	45	0,9		
30	46,7		12,3	1,1				22	0,9	1830	530	0,37	52	0,8	3490	1020
40	35		13	1,0			0,18	21	0,8			0,25	43	0,9		
50	28		14	0,7				19	0,8			0,22	44	0,9		
60	23,3		14	0,6				18	0,9				42	0,8		
80	17,5				l	ļ.	0,09	13	0,9			0,18	36	0,8	-	
100	14											', '	35	0,8		
100				50					63					75		
Rapport de Réduction	Vitesse sortie (mot. 1400 t/mn)	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn	Charge Rad. Max. à 400t/mn	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn	Charge Rad. Max. à 400t/mn	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn	Charge Rad. Max. à 400t/mn
					N	N				N	N				N	N
7,5	186,7		33,3	2,0				67,4	1,8			4	180	1,0		
10	140	0,75	43,9	1,6			1,5	88,6	1,4				237	0,8		
15	93,3		62,6	1,2		1400		126	1,1			3	260	0,8		2160
20	70		80	0,9				164	0,8				167	1,2		
25	56	0,55	70	1,0			1,1	145	0,9			1,5	204	1,0		
30	46,7	-,	80	1,0	4840		<u> </u>	165	1,0	6270	1830		232	1,0	7380	
40	35		67	1,1			0,75	143	1,0			1,1	214	1,0		
50	28	0,37	78	0,9				122	1,1			0,75	176	1,2	-	
60	23,3		87	0,8				138	0,9				199	1,0		
80	17,5	0,25	70	0,9				114	1,1			0,55	178	1,1		
100	14	0,18	59	0,9			-,-	127	0,9			,,,,,,,	203	0,9		
				90	l	i		1	110		1			130	i .	
Rapport de Réduction	Vitesse sortie (mot. 1400 t/mn)	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400t/mn N	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400t/mn N	Puis. Moteur kW	Couple de sortie Nm	Facteur de service	Charge Rad. Max à 10 t/mn N	Charge Rad. Max. à 400t/mn N
7,5	186,7		184	1,5				344	1,6				348	2,2		
10	140	4	242	1,3			7,5	453	1,3				455	1,8		
15	93,3	4	351	1,1				659	1,0			7.5	660	1,2		
20	70		456	0,8			5,5	635	1,0			7,5	877	1,0		
25	56	2	417	0,8	8180		4	573	1,2				1071	0,9	13500	
30	46,7	3	478	0,9		2390	4	645	1,1	12000	3530		1225	0,8		3950
40	35		306	1,2			2	636	1,1			5,5	1173	0,9		
50	28	1,5	367	1,0			3	764	0,9			4	1023	0,9		
60	23,3		421	0,8			2,2	645	1,0			3	886	1,1]	
80	17,5	0,75	257	1,1			1,5	546	0,9				1112	0,8		
100	14	0,13	300	0,9			1,1	470	1,0			1	652	1,1		

Effort Axial arbre de sortie F = 1/5 de l'effort Radial.

Pour calculer l'effort radial appliqué par l'élément fixé sur l'arbre de sortie, veillez à tenir compte des facteurs multiplicateurs Cp suivants :

Engrenage Cp=1,15 / Pignon de chaîne Cp=1,40 / Poulie en V : Cp=1,75 / Poulie crantée : Cp= 2,50.

F= 2000 x Couple x Cp/Diamètre Primitif.

Au cas où la charge n'est pas appliquée au centre de l'arbre de sortie ou dans le cas d'arbres des deux cotés : nous consulter. Pour toute autre vitesse de moteur (2800 t/mn, 900t/mn) : nous consulter

BAGUES D'ARRÊT FENDUES

La bague d'arrêt classique a pratiquement disparu.

Elle est remplacée par la bague à fente (en 1 ou 2 pièces) qui présente les avantages :

- d'un contact parfait sur toute la périphérie entre l'arbre et la bague,
- de supprimer le pointage de l'arbre s'il s'agit d'une vis à pointeau
- d'éviter la détérioration de l'arbre par la vis si la bague est amenée à tourner

MATIERE

- au-dessus : C 35

(ou acier équivalent)

ACIER:

ACIER WOX (ZX) d1 ≤ 52 : 9S Mn Pb28K 1.4305 (1.4301

PLASTIQUE (P) d1 tolérance +/-0,1mm. autres métaux : au choix du fabricant

ALU /

d2 tolérance +/-0,2mm sur demande

mais par quantité importante seulement

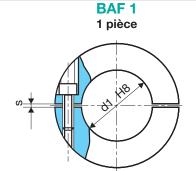
ARBRES RECTIFIÉS

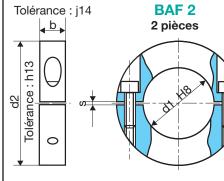
Tolérance h6. Traités et non traités. Voir page 196 du catalogue général

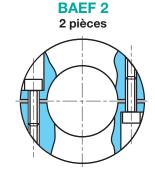
Désignation

Type x d1

				Ту	ре										BAF		BADF					BAFF
BAF 1	BAF 1 P	BAF 1 ZX	BAF 2	BAF 2 P	BAF 2 ZX	BADF 1	BADF 2	BADF 2 ZX	BAFF	d1	d2	b1	S	Vis	Couple de serrage des vis Nm	Effort Axial max. kN	b2	Vis	С	Couple de serrage des vis Nm	Effort Axial max. kN	Pas du filetage
•		•	•		0	•	•			5	25	10	1,6	M4x16	4,6	2,0	28	M5x16	14	9,5	6,4	
										5,5	25	10	1,6	M4x16	4,6	2,0	28	M5x16	14	9,5	6,4	
0		0	0		0	0	0			6	25	10	1,6	M4x16	4,6	2,0	28	M5x16	14	9,5	6,4	
0			0							7	25	10	1,6	M4x16	4,6	2,0	28	M5x16	14	9,5	6,4	
0		0	0		0	•	0			8	25 32	10	1,6	M4x16 M4x16	4,6 4,6	2,0 2,0	28 28	M5x16 M5x16	14 14	9,5 9,5	6,4	
0	0	0	0	0	0	0	0			10	32	10	2	M4x16	4,6	2,0	28	M5x16	14	9,5	6,5	
0			0							11	32	10	2	M4x16	4,6	2,0	28	M5x16	14	9,5	6,5	
0		0	0		0	0	0			12	32	10	2	M4x16	4,6	2,0	28	M5x16	14	9,5	6,5	
0			0							13	32	10	2	M4x16	4,6	2,0	28	M5x16	14	9,5	6,5	
0	0	0	0	0	0	0	0			14 15	40	12 12	2	M5x20 M5x20	9,5 9,5	3,3	36 36	M6x20 M6x20	18 18	16,4 16,4	9,4	
•		•	0		0	0	0			16	40	12	2	M5x20	9,5	3,3	36	M6x20	18	16,4	9,4	
0			0							17	40	12	2	M5x20	9,5	3,3	36	M6x20	18	16,4	9,4	
•		•	0			•				18	45	12	2	M5x20	9,5	3,7	40	M6x20	20	16,4	10,2	1,5
0	0	0	0	0	0	0	0			20	45	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0		0	0		0				0	22	45 50	12 12	2	M5x20 M5x20	9,5 9,5	3,6 3,6	40	M6x20 M6x20	20	16,4 16,4	10,2	1,5 1,5
ö	•	•	•	0	0	0	0			25	50	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0			0						0	26	50	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0		0	0		0					28	56	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0	0	0	0	0	0	0	0		0	30	56	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0			0		0				•	32 34	56 63	12 12	2	M5x20 M5x20	9,5 9,5	3,6 3,6	40	M6x20 M6x20	20	16,4 16,4	10,2	1,5 1,5
0		0	0			0	0			35	63	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0			0							36	63	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
•			0						0	38	63	12	2	M5x20	9,5	3,6	40	M6x20	20	16,4	10,2	1,5
0		0	0		0	0	0		_	40	70	14	2	M6x20	16,4	5,1	45	M6x20	25	16,4	10,2	1,5
0		0	0		0	0	0		0	42 45	70 80	14 14	2	M6x20 M6x20	16,4 16,4	5,1 5,1	45 45	M6x20 M6x20	25 25	16,4 16,4	10,2	1,5
-			0		0		_		0	48	80	14	2	M6x20	16,4	5,1	45	M6x20	25	16,4	10,2	1,5 1,5
0		0	0		0	0	0		Ť	50	80	14	2	M6x20	16,4	5,1	45	M6x20	25	16,4	10,2	1,5
0			0							52	80	14	2	M6x20	16,4	5,1	45	M6x20	25	16,4	10,2	1,5
0			0							55	90	16	3	M8x20	16,4	9,3	50	M8x20	25	39,7	18,7	1,5
0			0			0	0			56 60	90	16 16	3	M8x20 M8x20	16,4 16,4	9,3 9,3	50 50	M8x20 M8x20	25 25	39,7 39,7	18,7 18,7	1,5 1,5
-			•			0	0		•	65	100	16	3	M8x20	16,4	9,3	50	M8x20	25	39,7	29,6	1,5
0			0							70	110	20	3	M10x25	80	14,8	60	M10x25	30	80	29,6	1,5
0			0			0	0		0	75	125	20	3	M10x25	80	14,8	60	M10x25	30	80	29,6	1,5
0			0		0					80	125	20	3	M10x25	80	14,8	60	M10x25	30	80	29,6	2
0			0						0	85 90	125 140	20 25	3	M10x25 M10x30	80	14,8 14,8	60 60	M10x25 M10x30	30	80	29,6 29,6	2
0			0						0	100	140	25	3	M10x30	80	14,8	60	M10x30	30	80	29,6	2
0			0						0	110	160	25	3	M10x30	80	14,8	60	M10x30	30	80	29,6	2
0			0						0	120	160	25	3	M10x30	80	14,8	60	M10x30	30	80	29,6	2
0			0						0	125	180	28	3	M12x50	137	40,5	75	M12x50	38	68,5	43,2	2
0			0							130 140	180 200	28 28	3	M12x50 M12x50	137 137	40,5 40,5	75 75	M12x50 M12x50	38 38	68,5 68,5	43,2 43,2	3
								M12x50	137	40,5	75	M12x50	38	68,5	43,2	3						
									_		220	32	3	M16x70	333	40,5	100	M16x70	50	130	81,1	3
			nt dor	ınés à	titre	indica				170	250	32	3	M16x70	333	40,5	100	M16x70	50	130	81,1	3
					déper					180	250	32	3	M16x70	333	40,5	100	M16x70	50	130	81,1	3
	de				propr			ore		190	280	32	3	M16x80	333	40,5	100	M16x80	50 50	130	81,1	3
	sur lequel est serrée la bague. 200 280 32 3 M16x80 333 40,5 100 M16x80 50 130 81,1 3											J										






BAF 2P

BBP

BAGUES D'ARRÊT FENDUES 1 & 2 PIÈCES

BAF 1 x d1 Désignation

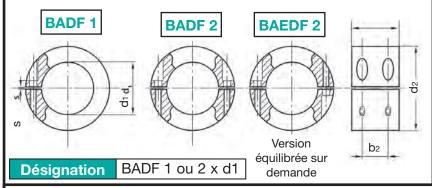
vis 6 pans creux DIN 912

Mêmes dimensions que les bagues BAF. 1. Serrage 30% plus élevé, meilleur équilibrage.

Désignation

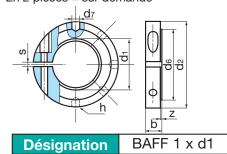
BAF 2 x d1

vis 6 pans creux DIN 912

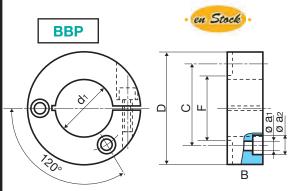

BAGUES FENDUES 2 PIÈCES ÉQUILIBRÉES

Dans ce type de bague, les 2 vis de serrage sont tête-bêche d'où un excellent équilibrage Intéressant à grandes vitesses.

- sur demande -


BAGUES D'ARRÊT DOUBLES FENDUES

POUR UN SERRAGE DOUBLEMENT ÉNERGIQUE



BAGUES D'ARRÊT FILETÉES FENDUES

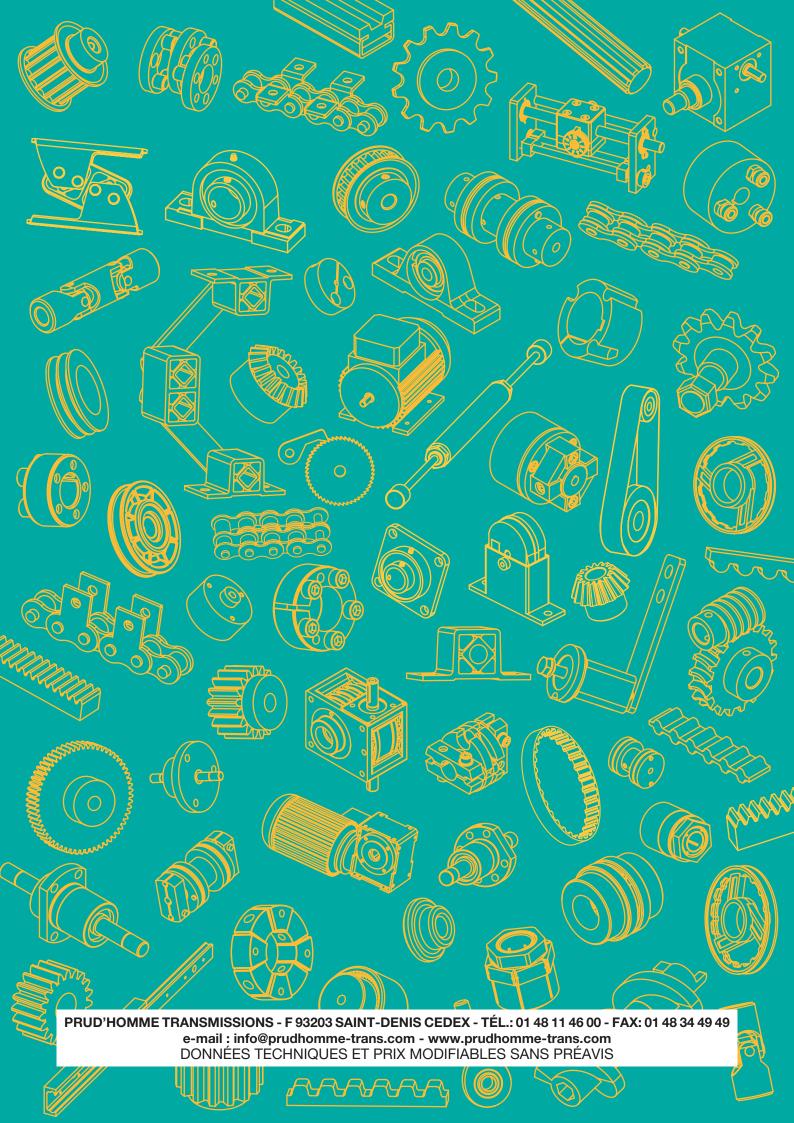
à filetage fin - Serrage par clé à ergot n = nombre de trous pour serrage En 2 pièces = sur demande

DE BLOCAGE DE PRÉCISION

Désignation

BBP x d1

À la fois élément de blocage et élément de fixation, de construction.


et permettent une reprise au tour très précise pour tous travaux (réalésage, épaulement, centrage...).

2 perçages, décalés de 120° et avec chambrage, permettent la fixation d'éléments divers (pignons, disques, cames, leviers...) soit

Toutes les faces sont soigneusement usinées par vis de Ø a1, dont la tête se noie dans le chambrage, soit par taraudage du perçage a1, pour une vis de Ø supérieur.

- d1 : alésage de stock d2 : réalésage maxi. d3 : réalésage maxi en cas d'épaulement F
- : épaulement maxi recommandé

	Réf.	d1	d2	F	d3	D	В	C	K	е	a1	a2	Poids kg
	 BBP 10 	10	25	25	20	59	20	42					0,3
	 BBP 15 	15	30	30	25	64	20	47					0,35
	 BBP 20 	20	35	35	30	69	20	52	2				0,47
:	 BBP 25 	25	40	40	35	74	20	57	4				0,5
	 BBP 30 	30	45	45	40	79	20	62					0,6
1	 BBP 35 	35	50	50	45	84	25	67		10	6,8	14,5	0,75
	BBP 40	40	55	55	50	89	25	72					0,85
	 BBP 45 	45	60	60	55	94	25	77					0,95
	 BBP 50 	50	65	65	60	98	25	81					1,1
	 BBP 55 	55	70	70	65	103	25	86	م د				1,25
	 BBP 60 	60	75	75	70	108	25	90	3,5				1,4
	BBP 70	70	80	80	75	119	28	100				17,5	1,5
	BBP 80	80	90	90	85	129	28	110		11	18,4		1,6
	BBP 90	90	0 100	100	95	139	28	120					1,75
	BBP 100	100	110	110	105	149	28	130					1,95

Voici votre CATALOGUE "NOUVEAUTÉS" PRUD'HOMME TRANSMISSIONS

Présents sur le marché depuis 1860 et répercutant l'évolution de la technique, nous n'avons cessé de développer, de manière exclusive et toujours plus poussée, notre spécialisation dans le domaine des transmissions essentiellement mécaniques.

Pour vous assurer dans les meilleurs délais un service technique de qualité, réel et complet, nous mettons à votre disposition:

- Ce catalogue "NOUVEAUTÉS" qui présente les produits venus enrichir notre gamme et qui complète notre CATALOGUE GÉNÉRAL TRANSMISSIONS MÉCANIQUES, VÉRITABLE OUTIL TECHNIQUE de TRAVAIL et de COMMUNICATION pour vos Bureaux d'Études, vos Ateliers, Services Achats, Fabrication et Maintenance. Notre catalogue général, qui présente en 12 chapitres nos gammes de pièces standard ou en réalisation spéciale, est disponible en version papier (2009), CD-ROM (2015), en ligne et comme applications Apple® et Androïd®.
- Notre STOCK CONSIDÉRABLE ADAPTÉ à VOS BESOINS, un atout essentiel, à la fois, pour nos délais de livraison très rapides sur la France entière et pour la rapidité de vos réalisations, de vos dépannages, de votre maintenance.
- Notre SÉLECTION de COMPOSANTS de QUALITÉ RÉGULIÈRE et FIABLE DANS LE TEMPS
 connue pour la VASTE DIVERSITÉ et la COMPLÉMENTARITÉ TECHNIQUE de nos gammes STANDARD ou en
 EXÉCUTION SPÉCIALE
- Nos INGÉNIEURS, nos ÉQUIPES COMMERCIALES et leur COMPÉTENCE TECHNIQUE

en mesure de

- répondre exactement et rapidement à vos besoins quotidiens
- dégager avec vous parmi nos produits la solution technique, économique ou ingénieuse la plus appropriée
- mettre en fabrication vos pièces spéciales selon vos plans et spécifications
- analyser sur place avec vous, si nécessaire, un problème complexe techniquement ou impliquant un investissement important.
- Nos EXPÉDITIONS QUOTIDIENNES sur la FRANCE ENTIÈRE

à réceptionner par vos établissements le lendemain avant midi.

Ce catalogue "NOUVEAUTÉS" reflète notre exigence de réactivité et de qualité technique.

Feuilletez le avec attention, questionnez-nous, c'est le véritable moyen de constater que

PRUD'HOMME TRANSMISSIONS répond à votre attente.

Cette démarche commune nous vaut depuis longtemps déjà une grande fidélité de notre clientèle et nous vaudra également votre confiance.

En cette attente, cordialement à Vous,

Avec L'Ensemble de nos Collaborateurs à votre écoute et à votre service